Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3
Ugo Bruzzo ; Dimitri Markushevich ; Alexander Tikhomirov
Open Mathematics, Tome 10 (2012), p. 1232-1245 / Harvested from The Polish Digital Mathematics Library

Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1) −r(2r + 1).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269108
@article{bwmeta1.element.doi-10_2478_s11533-012-0062-2,
     author = {Ugo Bruzzo and Dimitri Markushevich and Alexander Tikhomirov},
     title = {Moduli of symplectic instanton vector bundles of higher rank on projective space P3},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1232-1245},
     zbl = {1282.14020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0062-2}
}
Ugo Bruzzo; Dimitri Markushevich; Alexander Tikhomirov. Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3. Open Mathematics, Tome 10 (2012) pp. 1232-1245. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0062-2/

[1] Atiyah M.F., Geometry of Yang-Mills Fields, Accademia Nazionle dei Lincei, Scuola Normale Superiore, Pisa, 1979 | Zbl 0435.58001

[2] Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Yu.I., Construction of instantons, Phys. Lett. A, 1978, 65(3), 185–187 http://dx.doi.org/10.1016/0375-9601(78)90141-X | Zbl 0424.14004

[3] Atiyah M.F., Ward R.S., Instantons and algebraic geometry, Comm. Math. Phys., 1977, 55(2), 117–124 http://dx.doi.org/10.1007/BF01626514 | Zbl 0362.14004

[4] Barth W., Lectures on mathematical instanton bundles, In: Gauge Theories: Fundamental Interactions and Rigorous Results, Poiana Brasov, August 25–September 7, 1981, Progr. Phys., 5, Birkhäuser, Boston, 1982, 177–206

[5] Barth W., Hulek K., Monads and moduli of vector bundles, Manuscripta Math., 1978, 25(4), 323–347 http://dx.doi.org/10.1007/BF01168047 | Zbl 0395.14007

[6] Beilinson A.A., Coherent sheaves on ℙn and problems of linear algebra, Funct. Anal. Appl., 1978, 12(3), 214–216 http://dx.doi.org/10.1007/BF01681436 | Zbl 0424.14003

[7] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 684–713 | Zbl 0126.16801

[8] Jardim M., Verbitsky M., Trihyperkähler reduction and instanton bundles on ℂℙ3, preprint available at http://arxiv.org/abs/1103.4431 | Zbl 06382611

[9] McCarthy P.J., Rational parametrisation of normalised Stiefel manifolds, and explicit non-’t Hooft solutions of the Atiyah-Drinfeld-Hitchin-Manin instanton matrix equations for Sp(n), Lett. Math. Phys., 1981, 5(4), 255–261 http://dx.doi.org/10.1007/BF00401473 | Zbl 0489.58038

[10] Tikhomirov A.S., Moduli of mathematical instanton vector bundles with odd c 2 on projective space, Izv. Ross. Akad. Nauk Ser. Mat., 2012, 76(5) (in press, in Russian)

[11] Tjurin A.N., On the superposition of mathematical instantons. II, Progr. Math., 36, Birkhäuser, Boston, 1983

[12] Tyurin A.N., The structure of the variety of pairs of commuting pencils of symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(2), 409–430 (in Russian)