We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.
@article{bwmeta1.element.doi-10_2478_s11533-012-0058-y, author = {Taras Banakh and Andrzej Kucharski and Marta Martynenko}, title = {A spectral characterization of skeletal maps}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {161-169}, zbl = {1269.54005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0058-y} }
Taras Banakh; Andrzej Kucharski; Marta Martynenko. A spectral characterization of skeletal maps. Open Mathematics, Tome 11 (2013) pp. 161-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0058-y/
[1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta, preprint available at http://arxiv.org/abs/1108.4197 | Zbl 1267.18003
[2] Chigogidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996 http://dx.doi.org/10.1016/S0924-6509(96)80001-8
[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
[4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian) | Zbl 0762.54017
[5] Mioduszewski J., Rudolf L., H-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math. (Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969 | Zbl 0204.22404