A spectral characterization of skeletal maps
Taras Banakh ; Andrzej Kucharski ; Marta Martynenko
Open Mathematics, Tome 11 (2013), p. 161-169 / Harvested from The Polish Digital Mathematics Library

We prove that a map between two realcompact spaces is skeletal if and only if it is homeomorphic to the limit map of a skeletal morphism between ω-spectra with surjective limit projections.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269504
@article{bwmeta1.element.doi-10_2478_s11533-012-0058-y,
     author = {Taras Banakh and Andrzej Kucharski and Marta Martynenko},
     title = {A spectral characterization of skeletal maps},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {161-169},
     zbl = {1269.54005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0058-y}
}
Taras Banakh; Andrzej Kucharski; Marta Martynenko. A spectral characterization of skeletal maps. Open Mathematics, Tome 11 (2013) pp. 161-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0058-y/

[1] Banakh T., Kucharski A., Martynenko M., On functors preserving skeletal maps and skeletally generated compacta, preprint available at http://arxiv.org/abs/1108.4197 | Zbl 1267.18003

[2] Chigogidze A., Inverse Spectra, North-Holland Math. Library, 53, North-Holland Publishing, Amsterdam, 1996 http://dx.doi.org/10.1016/S0924-6509(96)80001-8

[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989

[4] Fedorchuk V., Chigogidze A.Ch., Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian) | Zbl 0762.54017

[5] Mioduszewski J., Rudolf L., H-Closed and Extremally Disconnected Hausdorff Spaces, Dissertationes Math. (Rozprawy Mat.), 66, Polish Academy of Sciences, Warsaw, 1969 | Zbl 0204.22404