We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
@article{bwmeta1.element.doi-10_2478_s11533-012-0057-z, author = {Xiangdong Yang}, title = {Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains}, journal = {Open Mathematics}, volume = {11}, year = {2013}, pages = {74-84}, zbl = {1301.47038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0057-z} }
Xiangdong Yang. Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains. Open Mathematics, Tome 11 (2013) pp. 74-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0057-z/
[1] Abate M., Saracco A., Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains, J. London Math. Soc. (in press), DOI: 10.1112/jlms/jdq092 | Zbl 1227.32008
[2] Arazy J., Fisher S.D., Peetre J., Hankel operators on weighted Bergman spaces, Amer. J. Math., 1988, 110(6), 989–1053 http://dx.doi.org/10.2307/2374685 | Zbl 0669.47017
[3] Čučkovic Ž., Zhao R., Weighted composition operators on the Bergman space, J. London Math. Soc., 2004, 70(2), 499–511 http://dx.doi.org/10.1112/S0024610704005605 | Zbl 1069.47023
[4] Čučkovic Ž., Zhao R., Essential norm estimate of weighted composition operators between Bergman spaces on strongly pseudoconvex domains, Math. Proc. Cambridge Philos. Soc., 2007, 142(3), 525–533 http://dx.doi.org/10.1017/S0305004106009893 | Zbl 1126.47024
[5] Kobayashi S., Hyperbolic Complex Spaces, Grundlehren Math. Wiss., 318, Springer, Berlin, 1998 | Zbl 0917.32019
[6] Li S.-Y., Trace ideal criteria for composition operators on Bergman spaces, Amer. J. Math., 1995, 117(5), 1299–1323 http://dx.doi.org/10.2307/2374977 | Zbl 0983.47018
[7] Zhu K.H., Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory, 1988, 20(2), 329–357 | Zbl 0676.47016
[8] Zhu K.H., Operator Theory in Function Spaces, Monogr. Textbooks Pure Appl. Math., 139, Marecl Dekker, New York, 1990 | Zbl 0706.47019