F-limit points in dynamical systems defined on the interval
Piotr Szuca
Open Mathematics, Tome 11 (2013), p. 170-176 / Harvested from The Polish Digital Mathematics Library

Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider a question about continuity of the multivalued map x → ω fF(x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:269273
@article{bwmeta1.element.doi-10_2478_s11533-012-0056-0,
     author = {Piotr Szuca},
     title = {F-limit points in dynamical systems defined on the interval},
     journal = {Open Mathematics},
     volume = {11},
     year = {2013},
     pages = {170-176},
     zbl = {06132922},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0056-0}
}
Piotr Szuca. F-limit points in dynamical systems defined on the interval. Open Mathematics, Tome 11 (2013) pp. 170-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0056-0/

[1] Bartoszynski T., Judah H., Set Theory, A K Peters, Wellesley, 1995

[2] Blass A., Ultrafilters: where topological dynamics = algebra = combinatorics, Topology Proc., 1993, 18, 33–56 | Zbl 0856.54042

[3] Bourgain J., Fremlin D.H., Talagrand M., Pointwise compact sets of Baire-measurable functions, Amer. J. Math., 1978, 100(4), 845–886 http://dx.doi.org/10.2307/2373913 | Zbl 0413.54016

[4] Bruckner A.M., Ceder J., Chaos in terms of the map x → ω(x; f), Pacific J. Math., 1992, 156(1), 63–96 | Zbl 0728.58020

[5] Fedorenko V.V., Šarkovskii A.N., Smítal J., Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc., 1990, 110(1), 141–148 http://dx.doi.org/10.1090/S0002-9939-1990-1017846-5 | Zbl 0728.26008

[6] García-Ferreira S., Sanchis M., Ultrafilter-limit points in metric dynamical systems, Comment. Math. Univ. Carolin., 2007, 48(3), 465–485 | Zbl 1199.54194

[7] Glasner E., Enveloping semigroups in topological dynamics, Topology Appl., 2007, 154(11), 2344–2363 http://dx.doi.org/10.1016/j.topol.2007.03.009 | Zbl 1123.54015

[8] Glasner E., Megrelishvili M., Hereditarily non-sensitive dynamical systems and linear representations, Colloq. Math., 2006, 104(2), 223–283 http://dx.doi.org/10.4064/cm104-2-5 | Zbl 1094.54020

[9] Glasner E., Megrelishvili M., New algebras of functions on topological groups arising from G-spaces, Fund. Math., 2008, 201(1), 1–51 http://dx.doi.org/10.4064/fm201-1-1 | Zbl 1161.37014

[10] Nuray F., Ruckle W.H., Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 2000, 245(2), 513–527 http://dx.doi.org/10.1006/jmaa.2000.6778 | Zbl 0955.40001

[11] Rosenthal H.P., A characterization of Banach spaces containing l 1, Proc. Nat. Acad. Sci. U.S.A., 1974, 71, 2411–2413 http://dx.doi.org/10.1073/pnas.71.6.2411 | Zbl 0297.46013

[12] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 1994, 344(2), 737–754 http://dx.doi.org/10.1090/S0002-9947-1994-1227094-X | Zbl 0812.58062

[13] Todorcevic S., Topics in Topology, Lecture Notes in Math., 1652, Springer, Berlin, 1997 | Zbl 0953.54001