Elliptic curves on spinor varieties
Nicolas Perrin
Open Mathematics, Tome 10 (2012), p. 1393-1406 / Harvested from The Polish Digital Mathematics Library

We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269650
@article{bwmeta1.element.doi-10_2478_s11533-012-0053-3,
     author = {Nicolas Perrin},
     title = {Elliptic curves on spinor varieties},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1393-1406},
     zbl = {1276.14072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0053-3}
}
Nicolas Perrin. Elliptic curves on spinor varieties. Open Mathematics, Tome 10 (2012) pp. 1393-1406. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0053-3/

[1] Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc., 1957, 7, 414–452 http://dx.doi.org/10.1112/plms/s3-7.1.414 | Zbl 0084.17305

[2] Ballico E., On the Hilbert scheme of curves in a smooth quadric, In: Deformations of Mathematical Structures, Łódz/Lublin, 1985/87, Kluwer, Dordrecht, 1989, 127–132 http://dx.doi.org/10.1007/978-94-009-2643-1_11

[3] Bourbaki N., Éléments de Mathématique. XXVI. Groupes et Algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind., 1285, Hermann, Paris, 1960

[4] Brion M., Kumar S., Frobenius Splitting Methods in Geometry and Representation Theory, Progr. Math., 231, Birkhäuser, Boston, 2005 | Zbl 1072.14066

[5] Bruguières A., The scheme of morphisms from an elliptic curve to a Grassmannian, Compositio Math., 1987, 63(1), 15–40 | Zbl 0664.14005

[6] Chaput P.E., Manivel L., Perrin N., Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, 2008, 13(1), 47–89 http://dx.doi.org/10.1007/s00031-008-9001-5 | Zbl 1147.14023

[7] Demazure M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 1974, 7(1), 53–88 | Zbl 0312.14009

[8] Iliev A., Markushevich D., Parametrization of sing Θ for a Fano 3-fold of genus 7 by moduli of vector bundles, Asian J. Math., 2007, 11(3), 427–458 | Zbl 1136.14031

[9] Kleiman S.L., The transversality of a general translate, Compositio Math., 1974, 28, 287–297 | Zbl 0288.14014

[10] Magyar P., Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv., 1998, 73(4), 603–636 http://dx.doi.org/10.1007/s000140050071 | Zbl 0951.14036

[11] Pasquier B., Perrin N., Elliptic curves on some homogeneous spaces, preprint available at http://arxiv.org/abs/1105.5320

[12] Perrin N., Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble), 2002, 52(1), 105–132 http://dx.doi.org/10.5802/aif.1878

[13] Perrin N., Rational curves on minuscule Schubert varieties, J. Algebra, 2005, 294(2), 431–462 http://dx.doi.org/10.1016/j.jalgebra.2005.08.031 | Zbl 1093.14070

[14] Perrin N., Small resolutions of minuscule Schubert varieties, Compos. Math., 2007, 143(5), 1255–1312 http://dx.doi.org/10.1112/S0010437X07002734 | Zbl 1129.14069

[15] Stembridge J.R., Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc., 1997, 349(4), 1285–1332 http://dx.doi.org/10.1090/S0002-9947-97-01805-9 | Zbl 0945.05064