New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces
Misha Bialy ; Andrey Mironov
Open Mathematics, Tome 10 (2012), p. 1596-1604 / Harvested from The Polish Digital Mathematics Library

We consider magnetic geodesic flows on the two-torus. We prove that the question of existence of polynomial in momenta first integrals on one energy level leads to a semi-Hamiltonian system of quasi-linear equations, i.e. in the hyperbolic regions the system has Riemann invariants and can be written in conservation laws form.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269054
@article{bwmeta1.element.doi-10_2478_s11533-012-0045-3,
     author = {Misha Bialy and Andrey Mironov},
     title = {New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1596-1604},
     zbl = {1259.35137},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0045-3}
}
Misha Bialy; Andrey Mironov. New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces. Open Mathematics, Tome 10 (2012) pp. 1596-1604. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0045-3/

[1] Bialy M., On periodic solutions for a reduction of Benney chain, NoDEA Nonlinear Differential Equations Appl., 2009, 16(6), 731–743 http://dx.doi.org/10.1007/s00030-009-0032-y | Zbl 1182.35014

[2] Bialy M., Integrable geodesic flows on surfaces, Geom. Funct. Anal., 2010, 20(2), 357–367 http://dx.doi.org/10.1007/s00039-010-0069-4 | Zbl 1203.37092

[3] Bialy M., Richness or semi-Hamiltonicity of quasi-linear systems which are not in evolution form, preprint available at http://arxiv.org/abs/1101.5897

[4] Bialy M., Mironov A.E., Rich quasi-linear system for integrable geodesic flows on 2-torus, Discrete Contin. Dyn. Syst., 2011, 29(1), 81–90 http://dx.doi.org/10.3934/dcds.2011.29.81 | Zbl 1232.37035

[5] Bialy M., Mironov A.E., Cubic and quartic integrals for geodesic flow on 2-torus via system of hydrodynamic type, Nonlinearity, 2011, 24(12), 3541–3554 http://dx.doi.org/10.1088/0951-7715/24/12/010 | Zbl 1232.35092

[6] Bolotin S.V., First integrals of systems with gyroscopic forces, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1984, 6, 75–82 (in Russian)

[7] Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys, 1989, 44(6), 35–124 http://dx.doi.org/10.1070/RM1989v044n06ABEH002300 | Zbl 0712.58032

[8] Gibbons J., Tsarev S.P., Reductions of the Benney equations, Phys. Lett. A, 1996, 211(1), 19–24 http://dx.doi.org/10.1016/0375-9601(95)00954-X | Zbl 1072.35588

[9] Kozlov V.V., Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb., 31, Springer, Berlin, 1996 | Zbl 0921.58029

[10] Mokhov O.I., Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature, Russian Math. Surveys, 1990, 45(3), 218–219 http://dx.doi.org/10.1070/RM1990v045n03ABEH002351 | Zbl 0712.35080

[11] Pavlov M.V., Tsarev S.P., Tri-Hamiltonian structures of Egorov systems of hydrodynamic type, Funct. Anal. Appl., 2003, 37(1), 32–45 http://dx.doi.org/10.1023/A:1022971910438 | Zbl 1019.37048

[12] Sévennec B., Géométrie des Systèmes Hyperboliques de Lois de Conservation, Mém. Soc. Math. France (N.S.), 56, Société Mathématique de France, Marseille, 1994

[13] Ten V.V., Polynomial first integrals of systems with gyroscopic forces, Math. Notes, 2000, 68(1–2), 135–138 | Zbl 0995.37043

[14] Tsarev S.P., The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR-Izv., 1991, 37(2), 397–419 http://dx.doi.org/10.1070/IM1991v037n02ABEH002069 | Zbl 0796.76014