Let X be a completely regular Hausdorff space, a cover of X, and the algebra of all -valued continuous functions on X which are bounded on every . A description of quotient algebras of is given with respect to the topologies of uniform and strict convergence on the elements of .
@article{bwmeta1.element.doi-10_2478_s11533-012-0043-5, author = {Mati Abel and Jorma Arhippainen and Jukka Kauppi}, title = {Description of quotient algebras in function algebras containing continuous unbounded functions}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1060-1066}, zbl = {1254.46056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0043-5} }
Mati Abel; Jorma Arhippainen; Jukka Kauppi. Description of quotient algebras in function algebras containing continuous unbounded functions. Open Mathematics, Tome 10 (2012) pp. 1060-1066. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0043-5/
[1] Abel M., Extensions of topological spaces depending on covering, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat., 1981, 30(4), 326–332 (in Russian) | Zbl 0478.54020
[2] Abel M., The extensions of topological spaces depending on cover and its applications, In: General Topology and its Relations to Modern Analysis and Algebra, 5, The Fifth Prague Topological Symposium, Prague, August 24–28, 1981, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983, 6–8
[3] Abel M., Arhippainen J., Kauppi J., Stone-Weierstrass type theorems for algebras containing continuous unbounded functions, Sci. Math. Jpn., 2010, 71(1), 1–10 | Zbl 1198.46025
[4] Abel M., Arhippainen J., Kauppi J., Description of closed ideals in function algebras containing continuous unbounded functions, Mediterr. J. Math., 2010, 7(3), 271–282 http://dx.doi.org/10.1007/s00009-010-0035-2 | Zbl 1211.46055
[5] Arhippainen J., On locally A-convex function algebras, In: General Topological Algebras, Tartu, October 4–7, 1999, Math. Stud. (Tartu), Est. Math. Soc. Tartu, 1, Estonian Mathematical Society, Tartu, 2001, 37–41 | Zbl 1029.46067
[6] Arhippainen J., Kauppi J., Generalization of the topological algebra (C b(X); β), Studia Math., 2009, 191(3), 247–262 http://dx.doi.org/10.4064/sm191-3-6 | Zbl 1176.46050
[7] Gillman L., Jerison M., Rings of continuous functions, The University Series in Higher Mathematics, Van Nostrand, Princeton-Toronto-London-New York, 1960 | Zbl 0093.30001
[8] Willard S., General Topology, Addison-Wesley, Reading-London-Don Mills, 1970