Description of quotient algebras in function algebras containing continuous unbounded functions
Mati Abel ; Jorma Arhippainen ; Jukka Kauppi
Open Mathematics, Tome 10 (2012), p. 1060-1066 / Harvested from The Polish Digital Mathematics Library

Let X be a completely regular Hausdorff space, 𝔖 a cover of X, and Cb(X,𝕂;𝔖) the algebra of all 𝕂 -valued continuous functions on X which are bounded on every S𝔖 . A description of quotient algebras of Cb(X,𝕂;𝔖) is given with respect to the topologies of uniform and strict convergence on the elements of 𝔖 .

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269330
@article{bwmeta1.element.doi-10_2478_s11533-012-0043-5,
     author = {Mati Abel and Jorma Arhippainen and Jukka Kauppi},
     title = {Description of quotient algebras in function algebras containing continuous unbounded functions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1060-1066},
     zbl = {1254.46056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0043-5}
}
Mati Abel; Jorma Arhippainen; Jukka Kauppi. Description of quotient algebras in function algebras containing continuous unbounded functions. Open Mathematics, Tome 10 (2012) pp. 1060-1066. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0043-5/

[1] Abel M., Extensions of topological spaces depending on covering, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat., 1981, 30(4), 326–332 (in Russian) | Zbl 0478.54020

[2] Abel M., The extensions of topological spaces depending on cover and its applications, In: General Topology and its Relations to Modern Analysis and Algebra, 5, The Fifth Prague Topological Symposium, Prague, August 24–28, 1981, Sigma Ser. Pure Math., 3, Heldermann, Berlin, 1983, 6–8

[3] Abel M., Arhippainen J., Kauppi J., Stone-Weierstrass type theorems for algebras containing continuous unbounded functions, Sci. Math. Jpn., 2010, 71(1), 1–10 | Zbl 1198.46025

[4] Abel M., Arhippainen J., Kauppi J., Description of closed ideals in function algebras containing continuous unbounded functions, Mediterr. J. Math., 2010, 7(3), 271–282 http://dx.doi.org/10.1007/s00009-010-0035-2 | Zbl 1211.46055

[5] Arhippainen J., On locally A-convex function algebras, In: General Topological Algebras, Tartu, October 4–7, 1999, Math. Stud. (Tartu), Est. Math. Soc. Tartu, 1, Estonian Mathematical Society, Tartu, 2001, 37–41 | Zbl 1029.46067

[6] Arhippainen J., Kauppi J., Generalization of the topological algebra (C b(X); β), Studia Math., 2009, 191(3), 247–262 http://dx.doi.org/10.4064/sm191-3-6 | Zbl 1176.46050

[7] Gillman L., Jerison M., Rings of continuous functions, The University Series in Higher Mathematics, Van Nostrand, Princeton-Toronto-London-New York, 1960 | Zbl 0093.30001

[8] Willard S., General Topology, Addison-Wesley, Reading-London-Don Mills, 1970