Topological algebras with maximal regular ideals closed
Mati Abel
Open Mathematics, Tome 10 (2012), p. 1054-1059 / Harvested from The Polish Digital Mathematics Library

It is shown that all maximal regular ideals in a Hausdorff topological algebra A are closed if the von Neumann bornology of A has a pseudo-basis which consists of idempotent and completant absolutely pseudoconvex sets. Moreover, all ideals in a unital commutative sequentially Mackey complete Hausdorff topological algebra A with jointly continuous multiplication and bounded elements are closed if the von Neumann bornology of A is idempotently pseudoconvex.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269677
@article{bwmeta1.element.doi-10_2478_s11533-012-0041-7,
     author = {Mati Abel},
     title = {Topological algebras with maximal regular ideals closed},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1054-1059},
     zbl = {1250.46033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0041-7}
}
Mati Abel. Topological algebras with maximal regular ideals closed. Open Mathematics, Tome 10 (2012) pp. 1054-1059. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0041-7/

[1] Abel M., Topological algebras with a nonempty spectrum, Tartu Riikl. Ül. Toimetised, 1989, 846, 11–24 (in Russian)

[2] Abel M., Advertive topological algebras, In: General Topological Algebras, Tartu, October 4–7, 1999, Math. Stud. (Tartu), 1, Estonian Mathematical Society, Tartu, 2001, 14–24 | Zbl 1044.46038

[3] Abel M., Topological algebras with pseudoconvexly bounded elements, Bedlewo, May 11–17, 2003, In: Topological Algebras, their Applications, and Related Topics, Banach Center Publ., 67, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2005, 21–33 http://dx.doi.org/10.4064/bc67-0-2 | Zbl 1091.46026

[4] Abel M., Topological algebras with idempotently pseudoconvex von Neumann bornology, In: Topological Algebras and Applications, Athens, June 27–July 1, 2005, Contemp. Math., 427, American Mathematical Society, Providence, 2007, 15–29 | Zbl 1125.46037

[5] Allan G.R., A spectral theory for locally convex alebras, Proc. London Math. Soc., 1965, 15, 399–421 http://dx.doi.org/10.1112/plms/s3-15.1.399 | Zbl 0138.38202

[6] Allan G.R., Dales H.G., McClure J.P., Pseudo-Banach algebras, Studia Math., 1971, 40, 55–69 | Zbl 0224.46052

[7] Balachandran V.K., Topological Algebras, North-Holland Math. Stud., 185, North-Holland, Amsterdam, 2000 http://dx.doi.org/10.1016/S0304-0208(00)80001-8

[8] Choukri R., Sur certaines questions concernant les Q-algèbres, Extracta Math., 2001, 16(1), 79–82 | Zbl 0995.46033

[9] Haralampidou M., Annihilator topological algebras, Portugal. Math., 1994, 51(1), 147–162 | Zbl 0806.46051

[10] Haralampidou M., On the Krull property in topological algebras, Comment. Math. Prace Mat., 2006, 46(2), 141–162 | Zbl 1180.46035

[11] Hogbe-Nlend H., Théorie des Bornologies et Applications, Lecture Notes in Math., 213, Springer, Berlin-New York, 1971 | Zbl 0225.46005

[12] Hogbe-Nlend H., Les fondements de la théorie spectrale des algèbres bornologiques, Bol. Soc. Brasil. Mat., 1972, 3(1), 19–56 http://dx.doi.org/10.1007/BF02584840 | Zbl 0338.46042

[13] Hogbe-Nlend H., Bornologies and Functional Analysis, North-Holland Math. Stud., 26, North-Holland, Amsterdam-New York-Oxford, 1977

[14] Husain T., Multiplicative Functionals on Topological Algebras, Res. Notes in Math., 85, Pitman, Boston, 1983 | Zbl 0514.46030

[15] Jarchow H., Locally Convex Spaces, Mathematische Leitfäden, Teubner, Stuttgart, 1981 | Zbl 0466.46001

[16] Köthe G., Topological Vector Spaces. I, Grundlehren Math. Wiss., 159, Springer, New York, 1969 http://dx.doi.org/10.1007/978-3-642-64988-2 | Zbl 0179.17001

[17] Ligaud J.-P., Sur les rapports entre topologies et bornologies pseudoconvexes, C. R. Acad. Sci. Paris. Sér. A-B, 1970, 271, A1058–A1060 | Zbl 0202.39403

[18] Naĭmark N.A., Normed Algebras, 3rd ed., Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff, Groningen, 1972

[19] Schaefer H.H., Wolff M.P., Topological Vector Spaces, 2nd ed., Grad. Texts in Math., 3, Springer, New York, 1999 http://dx.doi.org/10.1007/978-1-4612-1468-7 | Zbl 0983.46002

[20] Waelbroeck L., Algèbres commutatives: éléments réguliers, Bull. Soc. Math. Belg., 1957, 9, 42–49 | Zbl 0089.31903

[21] Waelbroeck L., Topological Vector Spaces and Algebras, Lecture Notes in Math., 230, Springer, Berlin-New York, 1971 | Zbl 0225.46001

[22] Waelbroeck L., The holomorphic functional calculus and non-Banach algebras, In: Algebras in Analysis, Birmingham, 1973, Academic Press, London, 1975, 187–251

[23] Waelbroeck L., Bornological Quotients, Mem. Cl. Sci. Collect. 4o(3), 7, Académie Royale de Belgique, Classe des Sciences, Brussels, 2005

[24] Żelazko W., On topologization of countably generated algebras, Studia Math., 1994, 112(1), 83–88 | Zbl 0832.46042