We calculate the singular homology and Čech cohomology groups of the Harmonic Archipelago. As a corollary, we prove that this space is not homotopy equivalent to the Griffiths space. This is interesting in view of Eda’s proof that the first singular homology groups of these spaces are isomorphic.
@article{bwmeta1.element.doi-10_2478_s11533-012-0038-2, author = {Umed Karimov and Du\v san Repov\v s}, title = {On the homology of the Harmonic Archipelago}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {863-872}, zbl = {1250.54033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0038-2} }
Umed Karimov; Dušan Repovš. On the homology of the Harmonic Archipelago. Open Mathematics, Tome 10 (2012) pp. 863-872. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0038-2/
[1] Balcerzyk S., On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci., 1959, 7, 141–142
[2] Bogley W.A., Sieradski A.J., Universal path spaces, preprint available at http://people.oregonstate.edu/_bogleyw/research/ups.pdf
[3] Conner G., Some interesting open problems in low-dimensional wild topology, In: Workshop on Topology of Wild Spaces and Fractals, Strobl, July 4–8, 2011, abstract available at http://dmg.tuwien.ac.at/dorfer/wild_topology/abstracts.pdf
[4] Curtis M.L., Fort M.K. Jr., Singular homology of one-dimensional spaces, Ann. of Math., 1959, 69, 309–313 http://dx.doi.org/10.2307/1970184 | Zbl 0088.38502
[5] Eda K., The singular homology groups of certain wild spaces (personal note, September 2011)
[6] Eda K., Kawamura K., The singular homology of the Hawaiian earring, J. London Math. Soc., 2000, 62(1), 305–310 http://dx.doi.org/10.1112/S0024610700001071 | Zbl 0958.55004
[7] Fuchs L., Infinite Abelian Groups. I, Pure Appl. Math., 36, Academic Press, New York-London, 1970
[8] Griffiths H.B., The fundamental group of two spaces with a common point, Q. J. Math., 1954, 5, 175–190 http://dx.doi.org/10.1093/qmath/5.1.175 | Zbl 0056.16301
[9] Harlap A.E., Local homology and cohomology, homological dimension, and generalized manifolds, Mat. Sb. (N.S.), 1975, 96(138), 347–373 | Zbl 0312.55006
[10] Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002
[11] Meilstrup M., Archipelago groups, In: Workshop on Topology of Wild Spaces and Fractals, Strobl, July 4–8, 2011, abstract available at http://dmg.tuwien.ac.at/dorfer/wild_topology/abstracts.pdf
[12] Spanier E.H., Algebraic Topology, McGraw-Hill, New York-Toronto, 1966