We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and for every α <ω 2; (2) 2ω = ω 2 and .
@article{bwmeta1.element.doi-10_2478_s11533-012-0037-3, author = {Uri Abraham and James Cummings}, title = {More results in polychromatic Ramsey theory}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1004-1016}, zbl = {1258.03054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0037-3} }
Uri Abraham; James Cummings. More results in polychromatic Ramsey theory. Open Mathematics, Tome 10 (2012) pp. 1004-1016. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0037-3/
[1] Abraham U., Cummings J., Smyth C., Some results in polychromatic Ramsey theory, J. Symbolic Logic, 2007, 72(3), 865–896 http://dx.doi.org/10.2178/jsl/1191333845 | Zbl 1125.03034
[2] Baumgartner J., Hajnal A., A proof (involving Martin’s axiom) of a partition relation, Fund. Math., 1973, 78(3), 193–203 | Zbl 0257.02054
[3] Galvin F., Advanced problems: 6034, Amer. Math. Monthly, 1975, 82(5), 529
[4] Galvin F., letters to S. Todorčevic, cited in: Todorčevic S., Forcing positive partition relations, Trans. Amer. Math. Soc., 1983, 280(2), 703–720
[5] Koszmider P., On strong chains of uncountable functions, Israel J. Math., 2000, 118, 289–315 http://dx.doi.org/10.1007/BF02803525 | Zbl 0961.03039
[6] Shelah S., Zapletal J., Embeddings of Cohen algebras, Adv. Math., 1997, 126(2), 93–118 http://dx.doi.org/10.1006/aima.1996.1597
[7] Todorčević S., Forcing positive partition relations, Trans. Amer. Math. Soc., 1983, 280(2), 703–720 | Zbl 0532.03023
[8] Todorčević S., A note on the proper forcing axiom, In: Axiomatic Set Theory, Boulder, June 19–25, 1983, Contemp. Math. 31, American Mathematical Society, Providence, 1984
[9] Todorčević S., Directed sets and cofinal types, Trans. Amer. Math. Soc., 1985, 290(2), 711–723 | Zbl 0592.03037