Curvatures of the diagonal lift from an affine manifold to the linear frame bundle
Oldřich Kowalski ; Masami Sekizawa
Open Mathematics, Tome 10 (2012), p. 837-843 / Harvested from The Polish Digital Mathematics Library

We investigate the curvature of the so-called diagonal lift from an affine manifold to the linear frame bundle LM. This is an affine analogue (but not a direct generalization) of the Sasaki-Mok metric on LM investigated by L.A. Cordero and M. de León in 1986. The Sasaki-Mok metric is constructed over a Riemannian manifold as base manifold. We receive analogous and, surprisingly, even stronger results in our affine setting.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269767
@article{bwmeta1.element.doi-10_2478_s11533-012-0033-7,
     author = {Old\v rich Kowalski and Masami Sekizawa},
     title = {Curvatures of the diagonal lift from an affine manifold to the linear frame bundle},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {837-843},
     zbl = {1262.53021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0033-7}
}
Oldřich Kowalski; Masami Sekizawa. Curvatures of the diagonal lift from an affine manifold to the linear frame bundle. Open Mathematics, Tome 10 (2012) pp. 837-843. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0033-7/

[1] Cordero L.A., Dodson C.T.J., de León M., Differential Geometry of Frame Bundles, Math. Appl., 47, Kluwer, Dordrecht, 1989 | Zbl 0673.53001

[2] Cordero L.A., de León M., On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl., 1986, 65(1), 81–91 | Zbl 0542.53014

[3] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer, Berlin-Heidelberg-New York, 1993 | Zbl 0782.53013

[4] Kowalski O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 1971, 250, 124–129 | Zbl 0222.53044

[5] Kowalski O., Sekizawa M., Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles - a classification, In: Differential Geometry and its Applications, Brno, August 24–30, 1986, Math. Appl. (East European Ser.), 27, Reidel, Dordrecht, 1987, 149–178 | Zbl 0632.53040

[6] Kowalski O., Sekizawa M., On curvatures of linear frame bundles with naturally lifted metrics, Rend. Semin. Mat. Univ. Politec. Torino, 2005, 63(3), 283–295 | Zbl 1141.53020

[7] Kowalski O., Sekizawa M., Invariance of g-natural metrics on linear frame bundles, Arch. Math. (Brno), 2008, 44(2), 139–147 | Zbl 1212.53042

[8] Kowalski O., Sekizawa M., On the geometry of orthonormal frame bundles, Math. Nachr., 2008, 281(12), 1799–1809 http://dx.doi.org/10.1002/mana.200610715 | Zbl 1158.53015

[9] Kowalski O., Sekizawa M., On the geometry of orthonormal frame bundles II, Ann. Global Anal. Geom., 2008, 33(4), 357–371 http://dx.doi.org/10.1007/s10455-007-9091-7 | Zbl 1141.53023

[10] Kowalski O., Sekizawa M., Invariance of the naturally lifted metrics on linear frame bundles over affine manifolds, Publ. Math. Debrecen (in press), preprint available at http://www.u-gakugei.ac.jp/~sekizawa/Invariance.pdf | Zbl 1299.53075

[11] Mok K.P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math., 1978, 302, 16–31 | Zbl 0378.53016

[12] Musso E., Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl., 1988, 150, 1–19 http://dx.doi.org/10.1007/BF01761461 | Zbl 0658.53045

[13] Patterson E.M., Walker A.G., Riemann extensions, Q. J. Math., 1952, 3, 19–28 http://dx.doi.org/10.1093/qmath/3.1.19

[14] Sekizawa M., Natural transformations of symmetric affine connections on manifolds to metrics on linear frame bundles: a classification, Monatsh. Math., 1988, 105(3), 229–243 http://dx.doi.org/10.1007/BF01636931 | Zbl 0639.53022

[15] Yano K., Ishihara S., Tangent and Cotangent Bundles: Differential Geometry, Pure Appl. Math., 16, Marcel Dekker, New York, 1973 | Zbl 0262.53024