An analogue of the Duistermaat-van der Kallen theorem for group algebras
Wenhua Zhao ; Roel Willems
Open Mathematics, Tome 10 (2012), p. 974-986 / Harvested from The Polish Digital Mathematics Library

Let G be a group, R an integral domain, and V G the R-subspace of the group algebra R[G] consisting of all the elements of R[G] whose coefficient of the identity element 1G of G is equal to zero. Motivated by the Mathieu conjecture [Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279], the Duistermaat-van der Kallen theorem [Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231], and also by recent studies on the notion of Mathieu subspaces, we show that for finite groups G, V G also forms a Mathieu subspace of the group algebra R[G] when certain conditions on the base ring R are met. We also show that for the free abelian groups G = ℤn, n ≥ 1, and any integral domain R of positive characteristic, V G fails to be a Mathieu subspace of R[G], which is equivalent to saying that the Duistermaat-van der Kallen theorem cannot be generalized to any field or integral domain of positive characteristic.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269550
@article{bwmeta1.element.doi-10_2478_s11533-012-0028-4,
     author = {Wenhua Zhao and Roel Willems},
     title = {An analogue of the Duistermaat-van der Kallen theorem for group algebras},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {974-986},
     zbl = {1255.16022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0028-4}
}
Wenhua Zhao; Roel Willems. An analogue of the Duistermaat-van der Kallen theorem for group algebras. Open Mathematics, Tome 10 (2012) pp. 974-986. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0028-4/

[1] Bass H., Connell E., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 1982, 7(2), 287–330 http://dx.doi.org/10.1090/S0273-0979-1982-15032-7 | Zbl 0539.13012

[2] Duistermaat J.J., van der Kallen W., Constant terms in powers of a Laurent polynomial, Indag. Math., 1998, 9(2), 221–231 http://dx.doi.org/10.1016/S0019-3577(98)80020-7 | Zbl 0916.22007

[3] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 | Zbl 0962.14037

[4] van den Essen A., The amazing image conjecture, preprint available at http://arxiv.org/abs/1006.5801 | Zbl 1239.14052

[5] van den Essen A., Willems R., Zhao W., Some results on the vanishing conjecture of differential operators with constant coefficients, preprint available at http://arxiv.org/abs/0903.1478 | Zbl 1317.33007

[6] van den Essen A., Wright D., Zhao W., Images of locally finite derivations of polynomial algebras in two variables, J. Pure Appl. Algebra, 2011, 215(9), 2130–2134 http://dx.doi.org/10.1016/j.jpaa.2010.12.002 | Zbl 1229.13022

[7] van den Essen A., Wright D., Zhao W., On the image conjecture, J. Algebra, 2011, 340, 211–224 http://dx.doi.org/10.1016/j.jalgebra.2011.04.036 | Zbl 1235.14057

[8] van den Essen A., Zhao W., Mathieu subspaces of univariate polynomial algebras, preprint available at http://arxiv.org/abs/1012.2017 | Zbl 1279.13011

[9] Francoise J.P., Pakovich F., Yomdin Y., Zhao W., Moment vanishing problem and positivity: some examples, Bull. Sci. Math., 2011, 135(1), 10–32 http://dx.doi.org/10.1016/j.bulsci.2010.06.002 | Zbl 1217.44008

[10] Keller O.-H., Ganze Cremona-Transformationen, Monatsh. Math. Phys., 1939, 47(1), 299–306 http://dx.doi.org/10.1007/BF01695502

[11] Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279 | Zbl 0889.22008

[12] Passman D.S., The Algebraic Structure of Group Rings, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York-London-Sydney, 1977 | Zbl 0368.16003

[13] Zhao W., Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Amer. Math. Soc., 2007, 359(1), 249–274 http://dx.doi.org/10.1090/S0002-9947-06-03898-0 | Zbl 1109.14041

[14] Zhao W., A vanishing conjecture on differential operators with constant coefficients, Acta Math. Vietnam., 2007, 32(2–3), 259–286 | Zbl 1139.14303

[15] Zhao W., Images of commuting differential operators of order one with constant leading coefficients, J. Algebra, 2010, 324(2), 231–247 http://dx.doi.org/10.1016/j.jalgebra.2010.04.022 | Zbl 1197.14064

[16] Zhao W., Generalizations of the image conjecture and the Mathieu conjecture, J. Pure Appl. Algebra, 2010, 214(7), 1200–1216 http://dx.doi.org/10.1016/j.jpaa.2009.10.007 | Zbl 1205.33017

[17] Zhao W., A generalization of Mathieu subspaces to modules of associative algebras, Cent. Eur. J. Math., 2010, 8(6), 1132–1155 http://dx.doi.org/10.2478/s11533-010-0068-6 | Zbl 1256.16013

[18] Zhao W., New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc., 2011, 139(9), 3141–3154 http://dx.doi.org/10.1090/S0002-9939-2011-10744-5 | Zbl 1229.14042

[19] Zhao W., Mathieu subspaces of associative algebras, J. Algebra, 2012, 350(2), 245–272 http://dx.doi.org/10.1016/j.jalgebra.2011.09.036

[20] http://en.wikipedia.org/wiki/Newton’s_identities

[21] http://en.wikipedia.org/wiki/Cayley-Hamilton_theorem