Hypergraphs with large transversal number and with edge sizes at least four
Michael Henning ; Christian Löwenstein
Open Mathematics, Tome 10 (2012), p. 1133-1140 / Harvested from The Polish Digital Mathematics Library

Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize the connected hypergraphs that achieve equality in the Lai-Chang bound and in the Chvátal-McDiarmid bound.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269535
@article{bwmeta1.element.doi-10_2478_s11533-012-0023-9,
     author = {Michael Henning and Christian L\"owenstein},
     title = {Hypergraphs with large transversal number and with edge sizes at least four},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1133-1140},
     zbl = {1242.05192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0023-9}
}
Michael Henning; Christian Löwenstein. Hypergraphs with large transversal number and with edge sizes at least four. Open Mathematics, Tome 10 (2012) pp. 1133-1140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0023-9/

[1] Chvátal V., McDiarmid C., Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26 http://dx.doi.org/10.1007/BF01191201 | Zbl 0776.05080

[2] Henning M.A., Yeo A., Hypergraphs with large transversal number and with edge sizes at least 3, J. Graph Theory, 2008, 59(4), 326–348 | Zbl 1211.05091

[3] Lai F.C., Chang G.J., An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133 http://dx.doi.org/10.1016/0095-8956(90)90101-5

[4] Thomassé S., Yeo A., Total domination of graphs and small transversals of hypergraphs, Combinatorica, 2007, 27(4), 473–487 http://dx.doi.org/10.1007/s00493-007-2020-3 | Zbl 1164.05052

[5] Tuza Zs., Covering all cliques of a graph, Discrete Math., 1990, 86(1–3), 117–126 http://dx.doi.org/10.1016/0012-365X(90)90354-K

[6] Yeo A., private communication