Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize the connected hypergraphs that achieve equality in the Lai-Chang bound and in the Chvátal-McDiarmid bound.
@article{bwmeta1.element.doi-10_2478_s11533-012-0023-9, author = {Michael Henning and Christian L\"owenstein}, title = {Hypergraphs with large transversal number and with edge sizes at least four}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1133-1140}, zbl = {1242.05192}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0023-9} }
Michael Henning; Christian Löwenstein. Hypergraphs with large transversal number and with edge sizes at least four. Open Mathematics, Tome 10 (2012) pp. 1133-1140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0023-9/
[1] Chvátal V., McDiarmid C., Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26 http://dx.doi.org/10.1007/BF01191201 | Zbl 0776.05080
[2] Henning M.A., Yeo A., Hypergraphs with large transversal number and with edge sizes at least 3, J. Graph Theory, 2008, 59(4), 326–348 | Zbl 1211.05091
[3] Lai F.C., Chang G.J., An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133 http://dx.doi.org/10.1016/0095-8956(90)90101-5
[4] Thomassé S., Yeo A., Total domination of graphs and small transversals of hypergraphs, Combinatorica, 2007, 27(4), 473–487 http://dx.doi.org/10.1007/s00493-007-2020-3 | Zbl 1164.05052
[5] Tuza Zs., Covering all cliques of a graph, Discrete Math., 1990, 86(1–3), 117–126 http://dx.doi.org/10.1016/0012-365X(90)90354-K
[6] Yeo A., private communication