Using the Plücker map between grassmannians, we study basic aspects of classic grassmannian geometries. For ‘hyperbolic’ grassmannian geometries, we prove some facts (for instance, that the Plücker map is a minimal isometric embedding) that were previously known in the ‘elliptic’ case.
@article{bwmeta1.element.doi-10_2478_s11533-012-0021-y, author = {Sasha Anan'in and Carlos Grossi}, title = {Differential geometry of grassmannians and the Pl\"ucker map}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {873-884}, zbl = {1244.53056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0021-y} }
Sasha Anan’in; Carlos Grossi. Differential geometry of grassmannians and the Plücker map. Open Mathematics, Tome 10 (2012) pp. 873-884. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0021-y/
[1] Anan’in S., Gonçalves E.C.B., Grossi C.H., Grassmannians and conformal structure on absolutes, preprint available at http://arxiv.org/abs/0907.4469
[2] Anan’in S., Grossi C., Coordinate-free classic geometries, Mosc. Math. J., 2011, 11(4), 633–655 | Zbl 1256.53014
[3] Borisenko A.A., Nikolaevskiı Yu.A., Grassmann manifolds and Grassmann image of submanifolds, Russian Math. Surveys, 1991, 46(2), 45–94 http://dx.doi.org/10.1070/RM1991v046n02ABEH002742 | Zbl 0742.53017
[4] do Carmo M.P., Riemannian Geometry, Math. Theory Appl., Birkhäuser, Boston, 1992
[5] Gromov M., Lawson H.B. Jr., Thurston W., Hyperbolic 4-manifolds and conformally flat 3-manifolds, Inst. Hautes Études Sci. Publ. Math., 1988, 68, 27–45 http://dx.doi.org/10.1007/BF02698540 | Zbl 0692.57012
[6] Guilfoyle B., Klingenberg W., Proof of the Carathéodory conjecture by mean curvature flow in the space of oriented affine lines, preprint available at http://arxiv.org/abs/0808.0851 | Zbl 1060.51015
[7] Kobayashi S., Nomizu K., Foundations of Differential Geometry. II, Interscience Tracts in Pure and Applied Mathematics, 15(2), John Wiley & Sons, New York-London-Sydney, 1969 | Zbl 0175.48504
[8] Kuiper N.H., Hyperbolic 4-manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math., 1988, 68, 47–76 http://dx.doi.org/10.1007/BF02698541 | Zbl 0692.57013
[9] Luo F., Constructing conformally flat structures on some Seifert fibred 3-manifolds, Math. Ann., 1992, 294(3), 449–458 http://dx.doi.org/10.1007/BF01934334 | Zbl 0758.57009