Differential geometry of grassmannians and the Plücker map
Sasha Anan’in ; Carlos Grossi
Open Mathematics, Tome 10 (2012), p. 873-884 / Harvested from The Polish Digital Mathematics Library

Using the Plücker map between grassmannians, we study basic aspects of classic grassmannian geometries. For ‘hyperbolic’ grassmannian geometries, we prove some facts (for instance, that the Plücker map is a minimal isometric embedding) that were previously known in the ‘elliptic’ case.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268939
@article{bwmeta1.element.doi-10_2478_s11533-012-0021-y,
     author = {Sasha Anan'in and Carlos Grossi},
     title = {Differential geometry of grassmannians and the Pl\"ucker map},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {873-884},
     zbl = {1244.53056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0021-y}
}
Sasha Anan’in; Carlos Grossi. Differential geometry of grassmannians and the Plücker map. Open Mathematics, Tome 10 (2012) pp. 873-884. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0021-y/

[1] Anan’in S., Gonçalves E.C.B., Grossi C.H., Grassmannians and conformal structure on absolutes, preprint available at http://arxiv.org/abs/0907.4469

[2] Anan’in S., Grossi C., Coordinate-free classic geometries, Mosc. Math. J., 2011, 11(4), 633–655 | Zbl 1256.53014

[3] Borisenko A.A., Nikolaevskiı Yu.A., Grassmann manifolds and Grassmann image of submanifolds, Russian Math. Surveys, 1991, 46(2), 45–94 http://dx.doi.org/10.1070/RM1991v046n02ABEH002742 | Zbl 0742.53017

[4] do Carmo M.P., Riemannian Geometry, Math. Theory Appl., Birkhäuser, Boston, 1992

[5] Gromov M., Lawson H.B. Jr., Thurston W., Hyperbolic 4-manifolds and conformally flat 3-manifolds, Inst. Hautes Études Sci. Publ. Math., 1988, 68, 27–45 http://dx.doi.org/10.1007/BF02698540 | Zbl 0692.57012

[6] Guilfoyle B., Klingenberg W., Proof of the Carathéodory conjecture by mean curvature flow in the space of oriented affine lines, preprint available at http://arxiv.org/abs/0808.0851 | Zbl 1060.51015

[7] Kobayashi S., Nomizu K., Foundations of Differential Geometry. II, Interscience Tracts in Pure and Applied Mathematics, 15(2), John Wiley & Sons, New York-London-Sydney, 1969 | Zbl 0175.48504

[8] Kuiper N.H., Hyperbolic 4-manifolds and tesselations, Inst. Hautes Études Sci. Publ. Math., 1988, 68, 47–76 http://dx.doi.org/10.1007/BF02698541 | Zbl 0692.57013

[9] Luo F., Constructing conformally flat structures on some Seifert fibred 3-manifolds, Math. Ann., 1992, 294(3), 449–458 http://dx.doi.org/10.1007/BF01934334 | Zbl 0758.57009