A singularity is said to be weakly-exceptional if it has a unique purely log terminal blow-up. In dimension 2, V. Shokurov proved that weakly-exceptional quotient singularities are exactly those of types D n, E 6, E 7, E 8. This paper classifies the weakly-exceptional quotient singularities in dimensions 3 and 4.
@article{bwmeta1.element.doi-10_2478_s11533-012-0019-5, author = {Dmitrijs Sakovics}, title = {Weakly-exceptional quotient singularities}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {885-902}, zbl = {1263.14007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0019-5} }
Dmitrijs Sakovics. Weakly-exceptional quotient singularities. Open Mathematics, Tome 10 (2012) pp. 885-902. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0019-5/
[1] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 | Zbl 1210.14019
[2] Blichfeldt H., Finite Collineation Groups, The University of Chicago Science Series, University of Chicago Press, Chicago, 1917
[3] Bruce J.W., Wall C.T.C., On the classification of cubic surfaces. J. London Math. Soc., 1979, 19(2), 245–256 http://dx.doi.org/10.1112/jlms/s2-19.2.245 | Zbl 0393.14007
[4] Cheltsov I., Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal., 2008, 18(4), 1118–1144 http://dx.doi.org/10.1007/s00039-008-0687-2 | Zbl 1161.14030
[5] Chel’tsov I., Shramov C., Log canonical thresholds of smooth Fano threefolds, Russian Math. Surveys, 2008, 63(5), 859–958 http://dx.doi.org/10.1070/RM2008v063n05ABEH004561 | Zbl 1167.14024
[6] Cheltsov I., Shramov C., On exceptional quotient singularities, Geom. Topol., 2011, 15(4), 1843–1882 http://dx.doi.org/10.2140/gt.2011.15.1843 | Zbl 1232.14001
[7] Cheltsov I., Shramov C., Six-dimensional exceptional quotient singularities, preprint avaialble at http://arxiv.org/pdf/1001.3863.pdf | Zbl 1281.14004
[8] Demailly J.-P., On Tian’s invariant and log canonical thresholds, Appendix to: Chel’tsov I., Shramov C., Log canonical thresholds of smooth Fano threefolds, Russian Math. Surveys, 2008, 63(5), 859–958 http://dx.doi.org/10.1070/RM2008v063n05ABEH004561
[9] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry. I, Progr. Math., 269, Birkhäuser, Boston, 443–548 | Zbl 1219.14015
[10] Flannery D.L., The finite irreducible monomial linear groups of degree 4, J. Algebra, 1999, 218(2), 436–469 http://dx.doi.org/10.1006/jabr.1999.7883 | Zbl 0939.20050
[11] Frobenius F.G., Über den von L. Bieberbach gefundenen Beweis eines Satzes von C. Jordan, Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1911, 241–248 | Zbl 42.0152.01
[12] Höfling B., Finite irreducible imprimitive nonmonomial complex linear groups of degree 4, J. Algebra, 2001, 236(2), 419–470 http://dx.doi.org/10.1006/jabr.2000.8525 | Zbl 1079.20501
[13] Hosoh T., Automorphism groups of cubic surfaces, J. Algebra, 1997, 192(2), 651–677 http://dx.doi.org/10.1006/jabr.1996.6968
[14] Iskovskikh V.A., Prokhorov Y.G., Fano Varieties, In: Algebraic Geometry, 5, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999
[15] Kollár J., Singularities of pairs, In: Algebraic Geometry, Santa Cruz, July 9–29, 1995, Proc. Sympos. Pure Math., 62(1), American Mathematical Society, Providence, 1997, 221–287 | Zbl 0905.14002
[16] Kudryavtsev S.A., Pure log terminal blow-ups, Math. Notes, 2001, 69(5–6), 814–819 http://dx.doi.org/10.1023/A:1010234532502 | Zbl 1015.14007
[17] Markushevich D., Prokhorov Yu.G., Exceptional quotient singularities, Amer. J. Math., 1999, 121(6), 1179–1189 http://dx.doi.org/10.1353/ajm.1999.0044 | Zbl 0958.14003
[18] Miller G.A., Blichfeldt H.F., Dickson L.E., Theory and Applications of Finite Groups, Dover, New York, 1961 | Zbl 0098.25103
[19] Prokhorov Yu.G., Blow-ups of canonical singularities, In: Proceedings of the International Algebraic Conference held on the occasion of the 90th birthday of A.G.Kurosh, Moscow, May 25–30, 1998, Walter de Gruyter, Berlin, 2000, 301–317
[20] Prokhorov Yu.G., Sparseness of exceptional quotient singularities, Math. Notes, 2000, 68(5–6), 664–667 http://dx.doi.org/10.1023/A:1026636027672 | Zbl 1060.14521
[21] Segre B., The Non-Singular Cubic Surfaces, Oxford University Press, Oxford, 1942 | Zbl 68.0358.01
[22] Shokurov V.V., 3-fold log flips, Russian Acad. Sci. Izv. Math., 1993, 40(1), 95–202 http://dx.doi.org/10.1070/IM1993v040n01ABEH001862 | Zbl 0785.14023
[23] Springer T.A., Invariant Theory, Lecture Notes in Math., 585, Springer, Berlin-New York, 1977
[24] Tian G., On Kähler-Einstein metrics on certain Kähler manifolds with C 1(M) > 0, Invent. Math., 1987, 89(2), 225–246 http://dx.doi.org/10.1007/BF01389077 | Zbl 0599.53046
[25] Tian G., Yau S.-T., Kähler-Einstein metrics on complex surfaces with C 1 > 0, Comm. Math. Phys., 1987, 112(1), 175–203 http://dx.doi.org/10.1007/BF01217685 | Zbl 0631.53052
[26] Yau S.S.-T., Yu Y., Gorenstein Quotient Singularities in Dimension Three, Mem. Amer. Math. Soc., 505, American Mathematical Society, Providence, 1993 | Zbl 0799.14001