On some congruences of power algebras
Agata Pilitowska ; Anna Zamojska-Dzienio
Open Mathematics, Tome 10 (2012), p. 987-1003 / Harvested from The Polish Digital Mathematics Library

In a natural way we can “lift” any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra (A, Ω) its power algebra of subsets. In this paper we investigate extended power algebras (power algebras of non-empty subsets with one additional semilattice operation) of modes (entropic and idempotent algebras). We describe some congruence relations on these algebras such that their quotients are idempotent. Such congruences determine some class of non-trivial subvarieties of the variety of all semilattice ordered modes (modals).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269105
@article{bwmeta1.element.doi-10_2478_s11533-012-0018-6,
     author = {Agata Pilitowska and Anna Zamojska-Dzienio},
     title = {On some congruences of power algebras},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {987-1003},
     zbl = {1258.08002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0018-6}
}
Agata Pilitowska; Anna Zamojska-Dzienio. On some congruences of power algebras. Open Mathematics, Tome 10 (2012) pp. 987-1003. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0018-6/

[1] Adaricheva K., Pilitowska A., Stanovský D., On complex algebras of subalgebras, Algebra Logika, 2008, 47(6), 655–686 (in Russian) http://dx.doi.org/10.1007/s10469-008-9036-7 | Zbl 1241.08002

[2] Bošnjak I., Madarász R., On power structures, Algebra Discrete Math., 2003, 2, 14–35 | Zbl 1063.08001

[3] Brink C., Power structures, Algebra Universalis, 1993, 30(2), 177–216 http://dx.doi.org/10.1007/BF01196091

[4] Ježek J., Markovic P., Maróti M., McKenzie R., The variety generated by tournaments, Acta Univ. Carolin. Math. Phys., 1999, 40(1), 21–41 | Zbl 0939.08003

[5] Ježek J., McKenzie R., The variety generated by equivalence algebras, Algebra Universalis, 2001, 45(2–3), 211–219 http://dx.doi.org/10.1007/s000120050213 | Zbl 0980.08004

[6] Jónsson B., Tarski A., Boolean algebras with operators. I, Amer. J. Math., 1951, 73, 891–939 http://dx.doi.org/10.2307/2372123 | Zbl 0045.31505

[7] Jónsson B., Tarski A., Boolean algebras with operators. II, Amer. J. Math., 1952, 74, 127–162 http://dx.doi.org/10.2307/2372074 | Zbl 0045.31601

[8] Kearnes K., Semilattice modes I: the associated semiring, Algebra Universalis, 1995, 34(2), 220–272 http://dx.doi.org/10.1007/BF01204784 | Zbl 0848.08005

[9] McKenzie R.N., McNulty G., Taylor W., Algebras, Lattices, Varieties. I, Wadsworth Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, 1987 | Zbl 0611.08001

[10] McKenzie R., Romanowska A., Varieties of ·-distributive bisemilattices, Contributions to General Algebra, Klagenfurt, May 25–28, 1978, Heyn, Klagenfurt, 1979, 213–218

[11] Pilitowska A., Modes of Submodes, PhD thesis, Warsaw University of Technology, 1996

[12] Pilitowska A., Zamojska-Dzienio A., Representation of modals, Demonstratio Math., 2011, 44(3), 535–556 | Zbl 1239.08003

[13] Pilitowska A., Zamojska-Dzienio A., Varieties generated by modes of submodes, preprint available at http://www.mini.pw.edu.pl/~apili/publikacje.html | Zbl 1270.08004

[14] Romanowska A., Semi-affine modes and modals, Sci. Math. Jpn., 2005, 61(1), 159–194 | Zbl 1067.08001

[15] Romanowska A.B., Roszkowska B., On some groupoid modes, Demonstratio Math., 1987, 20(1–2), 277–290 | Zbl 0669.08005

[16] Romanowska A.B., Smith J.D.H., Bisemilattices of subsemilattices, J. Algebra, 1981, 70(1), 78–88 http://dx.doi.org/10.1016/0021-8693(81)90244-1 | Zbl 0457.06002

[17] Romanowska A.B., Smith J.D.H., Modal Theory, Res. Exp. Math., 9, Heldermann, Berlin, 1985

[18] Romanowska A.B., Smith J.D.H., Subalgebra systems of idempotent entropic algebras, J. Algebra, 1989, 120(2), 247–262 http://dx.doi.org/10.1016/0021-8693(89)90197-X

[19] Romanowska A.B., Smith J.D.H., On the structure of subalgebra systems of idempotent entropic algebras, J. Algebra, 1989, 120(2), 263–283 http://dx.doi.org/10.1016/0021-8693(89)90198-1

[20] Romanowska A.B., Smith J.D.H., Modes, World Scientific, River Edge, 2002