ACM bundles, quintic threefolds and counting problems
N. Mohan Kumar ; Aroor Rao
Open Mathematics, Tome 10 (2012), p. 1380-1392 / Harvested from The Polish Digital Mathematics Library

We review some facts about rank two arithmetically Cohen-Macaulay bundles on quintic threefolds. In particular, we separate them into seventeen natural classes, only fourteen of which can appear on a general quintic. We discuss some enumerative problems arising from these.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269678
@article{bwmeta1.element.doi-10_2478_s11533-012-0017-7,
     author = {N. Mohan Kumar and Aroor Rao},
     title = {ACM bundles, quintic threefolds and counting problems},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1380-1392},
     zbl = {1274.14019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0017-7}
}
N. Mohan Kumar; Aroor Rao. ACM bundles, quintic threefolds and counting problems. Open Mathematics, Tome 10 (2012) pp. 1380-1392. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0017-7/

[1] Adler A., Ramanan S., Moduli of Abelian Varieties, Lecture Notes in Math., 1644, Springer, Berlin, 1996 | Zbl 0863.14024

[2] Beauville A., Determinantal hypersurfaces, Michigan Math. J., 2000, 48, 39–64 http://dx.doi.org/10.1307/mmj/1030132707 | Zbl 1076.14534

[3] Bershadsky M., Cecotti S., Ooguri H., Vafa C., Holomorphic anomalies in topological field theories, In: Mirror Symmetry, II, AMS/IP Stud. Adv. Math., 1, Amererical Mathematical Society, Providence, 1997, 655–682 | Zbl 0919.58067

[4] Chiantini L., Faenzi D., Rank 2 arithmetically Cohen-Macaulay bundles on a general quintic surface, Math. Nachr., 2009, 282(12), 1691–1708 http://dx.doi.org/10.1002/mana.200610825 | Zbl 1180.14011

[5] Chiantini L., Madonna C., ACM bundles on a general quintic threefold, Matematiche (Catania), 2000, 55(2), 239–258 | Zbl 1165.14304

[6] Clemens H., Kley H.P., On an example of Voisin, Michigan Math. J., 2000, 48, 93–119 http://dx.doi.org/10.1307/mmj/1030132710 | Zbl 1071.14501

[7] Ellingsrud G., Strømme S.A., Bott’s formula and enumerative geometry, J. Amer. Math. Soc., 1996, 9(1), 175–193 http://dx.doi.org/10.1090/S0894-0347-96-00189-0

[8] Grayson D.R., Stillman M.E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/

[9] Johnsen T., Kleiman S.L., Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 1996, 24(8), 2721–2753 | Zbl 0860.14038

[10] Katz S., On the finiteness of rational curves on quintic threefolds, Compositio Math., 1986, 60(2), 151–162 | Zbl 0606.14039

[11] Kley H.P., Rigid curves in complete intersection Calabi-Yau threefolds, Compositio Math., 2000, 123(2), 185–208 http://dx.doi.org/10.1023/A:1002012414149 | Zbl 1054.14054

[12] Knutsen A.L., On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, preprint available at http://arxiv.org/abs/1009.4419 | Zbl 1330.14014

[13] Kontsevich M., Enumeration of rational curves via torus actions, In: The Moduli Space of Curves, Texel Island, April 1994, Progr. Math., 129, Birkhäuser, Boston, 1995, 335–368 http://dx.doi.org/10.1007/978-1-4612-4264-2_12

[14] Madonna C., A splitting criterion for rank 2 vector bundles on hypersurfaces in ℙ4, Rend. Sem. Mat. Univ. Politec. Torino, 1998, 56(2), 43–54

[15] Mohan Kumar N., Rao A.P., Ravindra G.V., Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces, Int. Math. Res. Not. IMRN, 2007, 8, #rnm025 | Zbl 1132.14040

[16] Mohan Kumar N., Rao A.P., Ravindra G.V., Arithmetically Cohen-Macaulay bundles on hypersurfaces, Comment. Math. Helv., 2007, 82(4), 829–843 http://dx.doi.org/10.4171/CMH/111 | Zbl 1131.14047

[17] Okonek Ch., Notes on varieties of codimension 3 in ℙN, Manuscripta Math., 1994, 84, 421–442 http://dx.doi.org/10.1007/BF02567467 | Zbl 0828.14032

[18] Thomas R.P., A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom., 2000, 54(2), 367–438 | Zbl 1034.14015

[19] Vainsencher I., Avritzer D., Compactifying the space of elliptic quartic curves, In: Complex Projective Geometry, Trieste, June 19–24, 1989/Bergen, July 3–6, 1989, London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 1992, 47–58 | Zbl 0774.14024