We investigate the Baire classification of mappings f: X × Y → Z, where X belongs to a wide class of spaces which includes all metrizable spaces, Y is a topological space, Z is an equiconnected space, which are continuous in the first variable. We show that for a dense set in X these mappings are functions of a Baire class α in the second variable.
@article{bwmeta1.element.doi-10_2478_s11533-012-0016-8, author = {Olena Karlova and Volodymyr Maslyuchenko and Volodymyr Mykhaylyuk}, title = {Equiconnected spaces and Baire classification of separately continuous functions and their analogs}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1042-1053}, zbl = {1287.54009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0016-8} }
Olena Karlova; Volodymyr Maslyuchenko; Volodymyr Mykhaylyuk. Equiconnected spaces and Baire classification of separately continuous functions and their analogs. Open Mathematics, Tome 10 (2012) pp. 1042-1053. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0016-8/
[1] Banakh T.O., (Metrically) quarter-stratifiable spaces and their applications, Mat. Stud., 2002, 18(1), 10–28 | Zbl 1023.54023
[2] Burke M.R., Borel measurability of separately continuous functions, Topology Appl., 2003, 129(1), 29–65 http://dx.doi.org/10.1016/S0166-8641(02)00136-0 | Zbl 1017.54010
[3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
[4] Engelking R., Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995 | Zbl 0872.54002
[5] Hahn H., Reelle Funktionen. I: Punktfunktionen, Mathematik und ihre Anwendungen in Monographien und Lehrbüchern, 13, Leipzig, Academische Verlagsgesellscheft, 1932
[6] Kalancha A.K., Maslyuchenko V.K., The Lebesgue-Čech dimension and Baire classification of vector-valued separately continuous mappings, Ukraïn. Mat. Zh., 2003, 55(11), 1576–1579 (in Ukrainian) | Zbl 1080.46020
[7] Karlova O., Baire classification of mappings which are continuous in the first variable and of the functional class α in the second one, Matematychny Visnyk NTSH, 2005, 2, 98–114 (in Ukrainian)
[8] Lebesgue H., Sur l’approximation des fonctions, Bull. Sci. Math., 1898, 22, 278–287
[9] Moran W., Separate continuity and supports of measures, J. London Math. Soc., 1969, 44, 320–324 http://dx.doi.org/10.1112/jlms/s1-44.1.320 | Zbl 0172.33103
[10] Mykhaylyuk V.V., Baire classification of separately continuous functions and the Namioka property, Ukr. Mat. Visn., 2008, 5(2), 203–218 (in Ukrainian)
[11] Rudin W., Lebesgue’s first theorem, In: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud., 7b, Academic Press, New York-London, 1981, 741–747
[12] Sobchuk O.V., Baire classification and Lebesgue spaces, Naukovij Visnik Cernivec’kogo Universitetu, Matematika, 2001, 111, 110–112 (in Ukranian) | Zbl 1065.54509
[13] Sobchuk O.V., PP-spaces and Baire classification, In: Book of abstracts of the International Conference on Functional Analysis and its Applications dedicated to the 110th anniversary of Stefan Banach, Lvov, May 28–31, 2002, Ivano Franko National University, Lvov, 2002, 189
[14] Vera G., Baire measurability of separately continuous functions, Quart. J. Math. Oxford, 1988, 39(153), 109–116 http://dx.doi.org/10.1093/qmath/39.1.109 | Zbl 0642.28002