A new conservative finite difference scheme for Boussinesq paradigm equation
Natalia Kolkovska ; Milena Dimova
Open Mathematics, Tome 10 (2012), p. 1159-1171 / Harvested from The Polish Digital Mathematics Library

A family of nonlinear conservative finite difference schemes for the multidimensional Boussinesq Paradigm Equation is considered. A second order of convergence and a preservation of the discrete energy for this approach are proved. Existence and boundedness of the discrete solution on an appropriate time interval are established. The schemes have been numerically tested on the models of the propagation of a soliton and the interaction of two solitons. The numerical experiments demonstrate that the proposed family of schemes is about two times more accurate than the family of schemes studied in [Kolkovska N., Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 21–26, 2010, AIP Conf. Proc., 1301, American Institute of Physics, Melville, 2010, 395–403].

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269543
@article{bwmeta1.element.doi-10_2478_s11533-012-0011-0,
     author = {Natalia Kolkovska and Milena Dimova},
     title = {A new conservative finite difference scheme for Boussinesq paradigm equation},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1159-1171},
     zbl = {1262.65103},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0011-0}
}
Natalia Kolkovska; Milena Dimova. A new conservative finite difference scheme for Boussinesq paradigm equation. Open Mathematics, Tome 10 (2012) pp. 1159-1171. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0011-0/

[1] Abassy T.A., Improved Adomian decomposition method, Comput. Math. Appl., 2010, 59(1), 42–54 http://dx.doi.org/10.1016/j.camwa.2009.06.009 | Zbl 1189.65241

[2] Abrashin V.N., Stable difference schemes for quasilinear equations of mathematical physics, Differentsial’nye Uravneniya, 1982, 18(11), 1967–1971 (in Russian) | Zbl 0513.65061

[3] Agarwal R.P., Difference Equations and Inequalities, 2nd ed., Monogr. Textbooks Pure Appl. Math., 228, Marcel Dekker, New York, 2000 | Zbl 0952.39001

[4] Bogolubsky I.L., Some examples of inelastic soliton interaction, Comput. Phys. Comm., 1977, 13(3), 149–155 http://dx.doi.org/10.1016/0010-4655(77)90009-1

[5] Bratsos A.G., A predictorçorrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals, 2009, 40(5), 2083–2094 http://dx.doi.org/10.1016/j.chaos.2007.09.083 | Zbl 1198.65162

[6] Chertock A., Christov C.I., Kurganov A., Central-upwind schemes for the Boussinesq paradigm equations, In: Computational Science and High Performance Computing IV, Freiburg, October 12–16, 2009, Notes Numer. Fluid Mech. Multidiscip. Des., 115, Springer, Berlin-Heidelberg, 2011, 267–281

[7] Choo S.M., Pseudospectral method for the damped Boussinesq equation, Commun. Korean Math. Soc., 1998, 13(4), 889–901 | Zbl 0971.65092

[8] Choo S.M., Chung S.K., Numerical solutions for the damped Boussinesq equation by FD-FFT-perturbation method, Comput. Math. Appl., 2004, 47(6–7), 1135–1140 http://dx.doi.org/10.1016/S0898-1221(04)90093-4 | Zbl 1078.65075

[9] Christou M.A., Christov C.I., Galerkin spectral method for the 2D solitary waves of Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 22–27, 2009, AIP Conf. Proc., 1186, American Institute of Physics, Melville, 2009, 217–225

[10] Christov C.I., Conservative difference scheme for Boussinesq model of surface waves, In: Proc. ICFD V, Oxford University Press, Oxford, 1996, 343–349 | Zbl 0890.76048

[11] Christov C.I., An energy-consistent dispersive shallow-water model, Wave Motion, 2001, 34(2), 161–174 http://dx.doi.org/10.1016/S0165-2125(00)00082-2 | Zbl 1074.76510

[12] Christov C.I., Kolkovska N., Vasileva D., On the numerical simulation of unsteady solutions for the 2D Boussinesq paragigm equation, In: Numerical Methods and Applications, Borovets, August 20–24, 2010, Lecture Notes in Comput. Sci., 6046, Springer, Berlin-Heidelberg, 2011, 386–394 | Zbl 1318.76013

[13] Christov C.I., Velarde M.G., Inelastic interaction of Boussinesq solitions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1994, 4(5), 1095–1112 http://dx.doi.org/10.1142/S0218127494000800 | Zbl 0899.76089

[14] Dimova M., Kolkovska N., Comparison of some finite difference schemes for Boussinesq paradigm equation, In: Lecture Notes in Comput. Sci. (in press) | Zbl 1262.65103

[15] El-Zoheiry H., Numerical study of the improved Boussinesq equation, Chaos Solitons Fractals, 2002, 14(3), 377–384 http://dx.doi.org/10.1016/S0960-0779(00)00271-X | Zbl 0999.65090

[16] de Frutos J., Ortega T., Sanz-Serna J.M., Pseudospectral method for the ”good” Boussinesq equation, Math. Comp., 1991, 57(195), 109–122 | Zbl 0735.65089

[17] Kolkovska N., Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 21–26, 2010, AIP Conf. Proc., 1301, American Institute of Physics, Melville, 2010, 395–403 | Zbl 1268.65113

[18] Kolkovska N., Convergence of finite difference schemes for a multidimensional Boussinesq equation, In: Numerical Methods and Applications, Borovets, August 20–24, 2010, Lecture Notes in Comput. Sci., 6046, Springer, Berlin-Heidelberg, 2011, 469–476

[19] Kutev N., Kolkovska N., Dimova M., Christov C.I., Theoretical and numerical aspects for global existence and blow up for the solutions to Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Albena, June 20–25, 2011, AIP Conf. Proc., 1404, American Institute of Physics, Melville, 2011, 68–76

[20] Manoranjan V.S., Mitchell A.R., Morris J.Ll., Numerical solutions of the good Boussinesq equation, SIAM J. Sci. Statist. Comput., 1984, 5(4), 946–957 http://dx.doi.org/10.1137/0905065 | Zbl 0555.65080

[21] Matus P., Lemeshevsky S., Kandratsiuk A., Well-posedness and blow-up for IBVP for semilinear parabolic equations and numerical methods, Comput. Methods Appl. Math., 2010, 10(4), 395–420 | Zbl 1283.34010

[22] Mokin Yu.I., Class-preserving continuation of mesh functions, U.S.S.R. Comput. Math. and Math. Phys., 12(4), 1972, 19–35 http://dx.doi.org/10.1016/0041-5553(72)90112-7

[23] Ortega T., Sanz-Serna J.M., Nonlinear stability and convergence of finite-difference methods for the ”good” Boussinesq equation, Numer. Math., 1990, 58(2), 215–229 http://dx.doi.org/10.1007/BF01385620 | Zbl 0749.65082

[24] Pani A.K., Saranga H., Finite element Galerkin method for the ”good” Boussinesq equation, Nonlinear Anal., 1997, 29(8), 937–956 http://dx.doi.org/10.1016/S0362-546X(96)00093-4 | Zbl 0880.35097

[25] Polat N., Ertaş A., Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 2009, 349(1), 10–20 http://dx.doi.org/10.1016/j.jmaa.2008.08.025 | Zbl 1156.35331

[26] Wang S., Chen G., Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 2006, 64(1), 159–173 http://dx.doi.org/10.1016/j.na.2005.06.017 | Zbl 1092.35056

[27] Wazwaz A.-M., New travelling wave solutions to the Boussinesq and the Kleinç-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 2008, 13, 889–901 http://dx.doi.org/10.1016/j.cnsns.2006.08.005 | Zbl 1221.35372

[28] Xu R., Liu Y., Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations, J. Math. Anal. Appl., 2009, 359(2), 739–751 http://dx.doi.org/10.1016/j.jmaa.2009.06.034 | Zbl 1176.35119

[29] Xu R., Liu Y., Yu T., Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 2009, 71(10), 4977–4983 http://dx.doi.org/10.1016/j.na.2009.03.069 | Zbl 1167.35418

[30] Yan Z., Bluman G., New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Comput. Phys. Comm., 2002, 149(1), 11–18 http://dx.doi.org/10.1016/S0010-4655(02)00587-8 | Zbl 1196.68338