Using Fan’s Min-Max Theorem we investigate existence of solutions and their dependence on parameters for some second order discrete boundary value problem. The approach is based on variational methods and solutions are obtained as saddle points to the relevant Euler action functional.
@article{bwmeta1.element.doi-10_2478_s11533-012-0010-1, author = {Marek Galewski and Szymon G\l \k ab}, title = {Continuous dependence on parameters for second order discrete BVP's}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1076-1083}, zbl = {1245.39005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0010-1} }
Marek Galewski; Szymon Głąb. Continuous dependence on parameters for second order discrete BVP’s. Open Mathematics, Tome 10 (2012) pp. 1076-1083. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0010-1/
[1] Agarwal R.P., O’Regan D., A fixed-point approach for nonlinear discrete boundary value problems, Comput. Math. Appl., 1998, 36(10–12), 115–121 http://dx.doi.org/10.1016/S0898-1221(98)80014-X
[2] Agarwal R.P., Perera K., O’Regan D., Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ., 2005, 2, 93–99 | Zbl 1098.39001
[3] Cai X., Yu J., Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ., 2008, #247071 | Zbl 1146.39006
[4] Galewski M., Dependence on parameters for discrete second order boundary value problems, J. Difference Equ. Appl., 2011, 17(10), 1441–1453 http://dx.doi.org/10.1080/10236191003639442 | Zbl 1232.39007
[5] Guo Y., Wei W., Chen Y., Existence of three positive solutions for m-point discrete boundary value problems with p-Laplacian, Discrete Dyn. Nat. Soc., 2009, #538431 | Zbl 1177.34031
[6] Jakszto M., Skowron A., Existence of optimal controls via continuous dependence on parameters, Comput. Math. Appl., 2003, 46(10–11), 1657–1669 http://dx.doi.org/10.1016/S0898-1221(03)90200-8 | Zbl 1047.49002
[7] Ledzewicz U., Schättler H., Walczak S., Optimal control systems governed by second-order ODEs with Dirichlet boundary data and variable parameters, Illinois J. Math., 2003, 47(4), 1189–1206 | Zbl 1031.49002
[8] Lian F., Xu Y., Multiple solutions for boundary value problems of a discrete generalized Emden-Fowler equation, Appl. Math. Lett., 2010, 23(1), 8–12 http://dx.doi.org/10.1016/j.aml.2009.08.003 | Zbl 1191.39007
[9] Mihăilescu M., Rădulescu V., Tersian S., Eigenvalue problems for anisotropic discrete boundary value problems, J. Difference Equ. Appl., 2009, 15(6), 557–567 http://dx.doi.org/10.1080/10236190802214977 | Zbl 1181.47016
[10] Nirenberg L., Topics in Nonlinear Functional Analysis, Courant Lect. Notes Math., 6, American Mathematical Society, Providence, 2001 | Zbl 0992.47023
[11] Tian Y., Du Z., Ge W., Existence results for discrete Sturm-Liouville problem via variational methods, J. Difference Equ. Appl., 2007, 13(6), 467–478 http://dx.doi.org/10.1080/10236190601086451 | Zbl 1129.39007
[12] Zhang G., Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Anal., 2007, 66(6), 1400–1416
[13] Zhang G., Cheng S.S., Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 2006, 314(1), 311–319 http://dx.doi.org/10.1016/j.jmaa.2005.03.098 | Zbl 1087.39021