We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.
@article{bwmeta1.element.doi-10_2478_s11533-012-0006-x, author = {Ziv Ran}, title = {Jacobi-Bernoulli cohomology and deformations of schemes and maps}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {1541-1591}, zbl = {1279.14013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0006-x} }
Ziv Ran. Jacobi-Bernoulli cohomology and deformations of schemes and maps. Open Mathematics, Tome 10 (2012) pp. 1541-1591. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0006-x/
[1] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 1982, 67(1), 23–88 http://dx.doi.org/10.1007/BF01393371 | Zbl 0506.14016
[2] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, Berlin-New York-Heidelberg, 1977
[3] Ischebeck F., Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra, 1969, 11(4), 510–531 http://dx.doi.org/10.1016/0021-8693(69)90090-8
[4] Kodaira K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 1962, 75(1), 146–162 http://dx.doi.org/10.2307/1970424 | Zbl 0112.38404
[5] Kodaira K., Complex Manifolds and Deformations of Complex Structures, Grundlehren Math. Wiss., 283, Springer, Berlin-New York, 1986 http://dx.doi.org/10.1007/978-1-4613-8590-5
[6] Lichtenbaum S., Schlessinger M., The cotangent complex of a morphism, Trans. Amer. Math. Soc., 1967, 128, 41–70 http://dx.doi.org/10.1090/S0002-9947-1967-0209339-1 | Zbl 0156.27201
[7] Matsumura H., Commutative Algebra, 2nd ed., Math. Lecture Note Ser., 56, Benjamin/Cummings, Reading, 1980
[8] Merkulov S.A., Operad of formal homogeneous spaces and Bernoulli numbers, Algebra Number Theory, 2008, 2(4), 407–433 http://dx.doi.org/10.2140/ant.2008.2.407 | Zbl 1162.18003
[9] Petracci E., Universal representations of Lie algebras by coderivations, Bull. Sci. Math., 2003, 127(5), 439–465 http://dx.doi.org/10.1016/S0007-4497(03)00041-1 | Zbl 1155.17302
[10] Ran Z., Enumerative geometry of families of singular plane curves, Invent. Math., 1989, 97(3), 447–465 http://dx.doi.org/10.1007/BF01388886 | Zbl 0702.14040
[11] Ran Z., Stability of certain holomorphic maps, J. Differential Geom., 1991, 34(1), 37–47 | Zbl 0755.32017
[12] Ran Z., Canonical infinitesimal deformations, J. Algebraic Geom., 2000, 9(1), 43–69 | Zbl 1060.14016
[13] Ran Z., Lie atoms and their deformations, Geom. Funct. Anal., 2008, 18(1), 184–221 http://dx.doi.org/10.1007/s00039-008-0655-x | Zbl 1142.14007
[14] Sernesi E., Deformations of Algebraic Schemes, Grundlehren Math. Wiss., 334, Springer, Berlin, 2006 | Zbl 1102.14001
[15] Varadarajan V.S., Lie Groups, Lie Algebras and their Representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, 1974