Considering the notion of Jacobi type vector fields for a real hypersurface in a complex two-plane Grassmannian, we prove that if a structure vector field is of Jacobi type it is Killing. As a consequence we classify real hypersurfaces whose structure vector field is of Jacobi type.
@article{bwmeta1.element.doi-10_2478_s11533-012-0004-z, author = {Carlos Machado and Juan P\'erez}, title = {On the structure vector field of a real hypersurface in complex two-plane Grassmannians}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {451-455}, zbl = {1247.53074}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0004-z} }
Carlos Machado; Juan Pérez. On the structure vector field of a real hypersurface in complex two-plane Grassmannians. Open Mathematics, Tome 10 (2012) pp. 451-455. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0004-z/
[1] Berndt J., Suh Y.J., Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math., 1999, 127(1), 1–14 http://dx.doi.org/10.1007/s006050050018 | Zbl 0920.53016
[2] Berndt J., Suh Y.J., Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. Math., 2002, 137(2), 87–98 http://dx.doi.org/10.1007/s00605-001-0494-4 | Zbl 1015.53034
[3] Deshmukh S., Real hypersurfaces of a complex projective space, Proc. Indian Acad. Sci. Math. Sci., 2011, 121(2), 171–179 http://dx.doi.org/10.1007/s12044-011-0027-6 | Zbl 1269.53060
[4] Ishihara S., Elementary Riemannian Geometry, Morigita Publ., 1974 (in Japanese)
[5] Pérez J. de D., Suh Y.J., The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc., 2007, 44(1), 211–235 http://dx.doi.org/10.4134/JKMS.2007.44.1.211 | Zbl 1156.53034
[6] Suh Y.J., Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math., 2006, 147(4), 337–355 http://dx.doi.org/10.1007/s00605-005-0329-9 | Zbl 1094.53050