We introduce and study the lattice of normal subgroups of a group G that determine solitary quotients. It is closely connected to the well-known lattice of solitary subgroups of G, see [Kaplan G., Levy D., Solitary subgroups, Comm. Algebra, 2009, 37(6), 1873–1883]. A precise description of this lattice is given for some particular classes of finite groups.
@article{bwmeta1.element.doi-10_2478_s11533-012-0003-0, author = {Marius T\u arn\u auceanu}, title = {Solitary quotients of finite groups}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {740-747}, zbl = {1257.20024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0003-0} }
Marius Tărnăuceanu. Solitary quotients of finite groups. Open Mathematics, Tome 10 (2012) pp. 740-747. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0003-0/
[1] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, American Mathematical Society, Providence, 1967
[2] Grätzer G., General Lattice Theory, Pure Appl. Math., 75, Academic Press, New York-London, 1978 | Zbl 0436.06001
[3] Huppert B., Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer, Berlin, 1967
[4] Isaacs I.M., Finite Group Theory, Grad. Stud. Math., 92, Amer. American Mathematical Society, Providence, 2008 | Zbl 1169.20001
[5] Kaplan G., Levy D., Solitary subgroups, Comm. Algebra, 2009, 37(6), 1873–1883 http://dx.doi.org/10.1080/00927870802116554 | Zbl 1176.20023
[6] Kerby B.L., Rational Schur Rings over Abelian Groups, Master’s thesis, Brigham Young University, Provo, 2008
[7] Kerby B.L., Rode E., Characteristic subgroups of finite abelian groups, Comm. Algebra, 2011, 39(4), 1315–1343 http://dx.doi.org/10.1080/00927871003591843 | Zbl 1221.20037
[8] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, de Gruyter, Berlin, 1994
[9] Suzuki M., Structure of a Group and the Structure of its Lattice of Subgroups, Ergeb. Math. Grenzgeb., 10, Springer, Berlin-Göttingen-Heidelberg, 1956
[10] Suzuki M., Group Theory. I, II, Grundlehren Math. Wiss., 247, 248, Springer, Berlin, 1982, 1986
[11] Tărnăuceanu M., Groups Determined by Posets of Subgroups, Matrix Rom, Bucharest, 2006 | Zbl 1123.20001