Solitary quotients of finite groups
Marius Tărnăuceanu
Open Mathematics, Tome 10 (2012), p. 740-747 / Harvested from The Polish Digital Mathematics Library

We introduce and study the lattice of normal subgroups of a group G that determine solitary quotients. It is closely connected to the well-known lattice of solitary subgroups of G, see [Kaplan G., Levy D., Solitary subgroups, Comm. Algebra, 2009, 37(6), 1873–1883]. A precise description of this lattice is given for some particular classes of finite groups.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269796
@article{bwmeta1.element.doi-10_2478_s11533-012-0003-0,
     author = {Marius T\u arn\u auceanu},
     title = {Solitary quotients of finite groups},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {740-747},
     zbl = {1257.20024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0003-0}
}
Marius Tărnăuceanu. Solitary quotients of finite groups. Open Mathematics, Tome 10 (2012) pp. 740-747. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0003-0/

[1] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, American Mathematical Society, Providence, 1967

[2] Grätzer G., General Lattice Theory, Pure Appl. Math., 75, Academic Press, New York-London, 1978 | Zbl 0436.06001

[3] Huppert B., Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer, Berlin, 1967

[4] Isaacs I.M., Finite Group Theory, Grad. Stud. Math., 92, Amer. American Mathematical Society, Providence, 2008 | Zbl 1169.20001

[5] Kaplan G., Levy D., Solitary subgroups, Comm. Algebra, 2009, 37(6), 1873–1883 http://dx.doi.org/10.1080/00927870802116554 | Zbl 1176.20023

[6] Kerby B.L., Rational Schur Rings over Abelian Groups, Master’s thesis, Brigham Young University, Provo, 2008

[7] Kerby B.L., Rode E., Characteristic subgroups of finite abelian groups, Comm. Algebra, 2011, 39(4), 1315–1343 http://dx.doi.org/10.1080/00927871003591843 | Zbl 1221.20037

[8] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, de Gruyter, Berlin, 1994

[9] Suzuki M., Structure of a Group and the Structure of its Lattice of Subgroups, Ergeb. Math. Grenzgeb., 10, Springer, Berlin-Göttingen-Heidelberg, 1956

[10] Suzuki M., Group Theory. I, II, Grundlehren Math. Wiss., 247, 248, Springer, Berlin, 1982, 1986

[11] Tărnăuceanu M., Groups Determined by Posets of Subgroups, Matrix Rom, Bucharest, 2006 | Zbl 1123.20001