A combinatorial proof of a result for permutation pairs
Toufik Mansour ; Mark Shattuck
Open Mathematics, Tome 10 (2012), p. 797-806 / Harvested from The Polish Digital Mathematics Library

In this paper, a direct combinatorial proof is given of a result on permutation pairs originally due to Carlitz, Scoville, and Vaughan and later extended. It concerns showing that the series expansion of the reciprocal of a certain multiply exponential generating function has positive integer coefficients. The arguments may then be applied to related problems, one of which concerns the reciprocal of the exponential series for Fibonacci numbers.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269732
@article{bwmeta1.element.doi-10_2478_s11533-012-0001-2,
     author = {Toufik Mansour and Mark Shattuck},
     title = {A combinatorial proof of a result for permutation pairs},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {797-806},
     zbl = {1239.05017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0001-2}
}
Toufik Mansour; Mark Shattuck. A combinatorial proof of a result for permutation pairs. Open Mathematics, Tome 10 (2012) pp. 797-806. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0001-2/

[1] Benjamin A.T., Quinn J.J., Proofs that Really Count, Dolciani Math. Exp., 27, Mathematical Association of America, Washington, 2003

[2] Carlitz L., Scoville R., Vaughan T., Enumeration of pairs of permutations, Discrete Math., 1976, 14(3), 215–239 http://dx.doi.org/10.1016/0012-365X(76)90035-2 | Zbl 0322.05008

[3] Fedou J.-M., Rawlings D., Statistics on pairs of permutations, Discrete Math., 1995, 143(1–3), 31–45 http://dx.doi.org/10.1016/0012-365X(94)00027-G

[4] Langley T.M., Remmel J.B., Enumeration of m-tuples of permutations and a new class of power bases for the space of symmetric functions, Adv. in Applied Math., 2006, 36(1), 30–66 http://dx.doi.org/10.1016/j.aam.2005.05.005 | Zbl 1085.05068

[5] Sloane N.J., The On-Line Encyclopedia of Integer Sequences, http://oeis.org | Zbl 1274.11001

[6] Stanley R.P., Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A, 1976, 20(3), 336–356 http://dx.doi.org/10.1016/0097-3165(76)90028-5 | Zbl 0331.05004

[7] Stanley R.P., Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math., 49, Cambridge University Press, Cambridge, 1997