On certain arithmetic functions involving the greatest common divisor
Ekkehard Krätzel ; Werner Nowak ; László Tóth
Open Mathematics, Tome 10 (2012), p. 761-774 / Harvested from The Polish Digital Mathematics Library

The paper deals with asymptotics for a class of arithmetic functions which describe the value distribution of the greatest-common-divisor function. Typically, they are generated by a Dirichlet series whose analytic behavior is determined by the factor ζ2(s)ζ(2s − 1). Furthermore, multivariate generalizations are considered.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269485
@article{bwmeta1.element.doi-10_2478_s11533-011-0144-6,
     author = {Ekkehard Kr\"atzel and Werner Nowak and L\'aszl\'o T\'oth},
     title = {On certain arithmetic functions involving the greatest common divisor},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {761-774},
     zbl = {1285.11120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0144-6}
}
Ekkehard Krätzel; Werner Nowak; László Tóth. On certain arithmetic functions involving the greatest common divisor. Open Mathematics, Tome 10 (2012) pp. 761-774. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0144-6/

[1] Bombieri E., Iwaniec H., On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1986, 13(3), 449–472 | Zbl 0615.10047

[2] Chidambaraswamy J., Sitaramachandra Rao R., Asymptotic results for a class of arithmetical functions, Monatsh. Math., 1985, 99(1), 19–27 http://dx.doi.org/10.1007/BF01300735

[3] Graham S.W., Kolesnik G., Van der Corput’s Method of Exponential Sums, London Math. Soc. Lecture Note Ser., 126, Cambridge University Press, Cambridge, 1991 http://dx.doi.org/10.1017/CBO9780511661976 | Zbl 0713.11001

[4] Huxley M.N., Area, Lattice Points, and Exponential Sums, London Math. Soc. Monogr. Ser. (N.S.), 13, Clarendon Press, Oxford University Press, New York, 1996 | Zbl 0861.11002

[5] Huxley M.N., Exponential sums and lattice points. III, Proc. London Math. Soc., 2003, 87(3), 591–609 http://dx.doi.org/10.1112/S0024611503014485 | Zbl 1065.11079

[6] Huxley M.N., Exponential sums and the Riemann zeta-function. V, Proc. London Math. Soc., 2005, 90(1), 1–41 http://dx.doi.org/10.1112/S0024611504014959 | Zbl 1083.11052

[7] Ivic A., The Riemann Zeta-Function, John Wiley & Sons, New York, 1985

[8] Iwaniec H., Mozzochi C.J., On the divisor and circle problems, J. Number Theory, 1988, 29(1), 60–93 http://dx.doi.org/10.1016/0022-314X(88)90093-5 | Zbl 0644.10031

[9] Krätzel E., Lattice Points, Math. Appl. (East European Ser.), 33, Kluwer, Dordrecht, 1988

[10] Phillips E., The zeta-function of Riemann; further developments of van der Corput’s method, Q. J. Math., 1933, 4, 209–225 http://dx.doi.org/10.1093/qmath/os-4.1.209 | Zbl 59.0204.01

[11] Sloane N., The On-Line Encyclopedia of Integer Sequences, #A055155, http://oeis.org/A055155 | Zbl 1274.11001

[12] Sloane N., The On-Line Encyclopedia of Integer Sequences, #A078430, http://oeis.org/A078430 | Zbl 1274.11001

[13] Sloane N., The On-Line Encyclopedia of Integer Sequences, #A124316, http://oeis.org/A124316 | Zbl 1274.11001

[14] Tanigawa Y., Zhai W., On the gcd-sum function, J. Integer Seq., 2008, 11(2), #08.2.3 | Zbl 1247.11124

[15] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford University Press, Oxford, 1986 | Zbl 0601.10026

[16] Tóth L., Menon’s identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino, 2011, 69(1), 97–110 | Zbl 1235.11011