On a space of smooth functions on a convex unbounded set in ℝn admitting holomorphic extension in ℂn
Il’dar Musin ; Polina Yakovleva
Open Mathematics, Tome 10 (2012), p. 665-692 / Harvested from The Polish Digital Mathematics Library

For some given logarithmically convex sequence M of positive numbers we construct a subspace of the space of rapidly decreasing infinitely differentiable functions on an unbounded closed convex set in ℝn. Due to the conditions on M each function of this space admits a holomorphic extension in ℂn. In the current article, the space of holomorphic extensions is considered and Paley-Wiener type theorems are established. To prove these theorems, some auxiliary results on extensions of holomorphic functions satisfying some weighted L 2-bounds in a domain of holomorphy in ℂn are obtained with the aid of L. Hörmander’s method of L 2-bounds for the ¯ operator. Also, some new facts on the Fourier-Laplace transform of tempered distributions complementing some well-known results of V.S. Vladimirov are employed.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269776
@article{bwmeta1.element.doi-10_2478_s11533-011-0142-8,
     author = {Il'dar Musin and Polina Yakovleva},
     title = {On a space of smooth functions on a convex unbounded set in $\mathbb{R}$n admitting holomorphic extension in $\mathbb{C}$n},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {665-692},
     zbl = {1252.46025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0142-8}
}
Il’dar Musin; Polina Yakovleva. On a space of smooth functions on a convex unbounded set in ℝn admitting holomorphic extension in ℂn. Open Mathematics, Tome 10 (2012) pp. 665-692. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0142-8/

[1] Berenstein C.A., Dostal M.A., Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math., 256, Springer, Berlin-New York, 1972 | Zbl 0237.47025

[2] Berenstein C., Struppa D., Complex analysis and convolution equations, In: Complex Analysis - Several Variables V, Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravl., 54, VINITI, Moscow, 1989, 5–111 (in Russian) | Zbl 0787.46032

[3] Carmichael R.D., Kaminski A., Pilipovic S., Notes on Boundary Values in Ultradistribution Spaces, Lecture Notes Series, 49, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1999 | Zbl 0969.46027

[4] Carmichael R.D., Pathak R.S., Pilipovic S., Holomorphic functions in tubes associated with ultradistributions, Complex Variables Theory Appl., 1993, 21(1–2), 49–72 | Zbl 0809.46036

[5] Carmichael R., Pilipovic S., On the convolution and the Laplace transformation in the space of Beurling-Gevrey tempered ultradistributions, Math. Nachr., 1992, 158(1), 119–132 http://dx.doi.org/10.1002/mana.19921580109 | Zbl 0786.46037

[6] Edwards R.E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965 | Zbl 0182.16101

[7] Ehrenpreis L., Fourier Analysis in Several Complex Variables, Pure Appl. Math. (N. Y.), 17, John Wiley & Sons, New York-London-Sydney, 1970 | Zbl 0195.10401

[8] Hansen S., Localizable analytically uniform spaces and the fundamental principle, Trans. Amer. Math. Soc., 1981, 264(1), 235–250 http://dx.doi.org/10.1090/S0002-9947-1981-0597879-2 | Zbl 0482.46023

[9] Hörmander L., L 2 estimates and existence theorems for the ¯ operator, Acta Math., 1965, 113(1), 89–152 http://dx.doi.org/10.1007/BF02391775 | Zbl 0158.11002

[10] Komatsu H., Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Mat., 1973, 20, 25–105 | Zbl 0258.46039

[11] Komatsu H., Ultradistributions II. The kernel theorem and ultradistributions with support in a submanifold, J. Fac. Sci. Univ. Tokyo Sect. IA Mat., 1977, 24(3), 607–628 | Zbl 0385.46027

[12] Krivosheev A.S., Napalkov V.V., Complex analysis and convolution operators, Uspekhi Mat. Nauk, 1992, 47(6), 3–58 (in Russian) | Zbl 0801.46051

[13] Łusik G., Laplace ultradistributions on a half line and a strong quasi-analyticity principle, Ann. Polon. Math., 1996, 63(1), 13–33

[14] Michalik S., Laplace ultradistributions supported by a cone, Banach Center Publ., 2010, 88, 229–241 http://dx.doi.org/10.4064/bc88-0-18 | Zbl 1202.46046

[15] Musin I.Kh., Fedotova P.V., A theorem of Paley-Wiener type for ultradistributions, Mat. Zametki, 2009, 85(6), 894–914 (in Russian) | Zbl 1186.46037

[16] Musin I.Kh., Yakovleva P.V., On a space of rapidly decreasing infinitely differentiable functions on an unbounded convex set in ℝn and its dual, preprint available at http://arxiv.org/abs/1003.3302

[17] Neymark M., On the Laplace transform of functionals on classes of infinitely differentiable functions, Ark. Mat., 1969, 7(6), 577–594 http://dx.doi.org/10.1007/BF02590896 | Zbl 0172.42101

[18] Palamodov V.P., Linear Differential Operators with Constant Coefficients, Grundlehren Math. Wiss., 168, Springer, New York-Berlin, 1970 | Zbl 0191.43401

[19] Robertson A.P., Robertson W., Topological Vector Spaces, Cambridge Tracts in Math., 53, Cambridge University Press, Cambridge-New York, 1980 | Zbl 0423.46001

[20] de Roever J.W., Complex Fourier Transformation and Analytic Functionals with Unbounded Carriers, Mathematical Centre Tracts, 89, Mathematisch Centrum, Amsterdam, 1978 | Zbl 0406.46032

[21] de Roever J.W., Analytic representations and Fourier transforms of analytic functionals in Z′ carried by the real space, SIAM J. Math. Anal., 1978, 9(6), 996–1019 http://dx.doi.org/10.1137/0509081 | Zbl 0406.46033

[22] Sebastião e Silva J., Su certe classi di spazi localmente convessi importanti per le applicazioni, Rend. Mat. e Appl., 1955, 14, 388–410

[23] Taylor B.A., Analytically uniform spaces of infinitely differentiable functions, Comm. Pure Appl. Math., 1971, 24(1), 39–51 http://dx.doi.org/10.1002/cpa.3160240105 | Zbl 0205.41501

[24] Vladimirov V.S., Functions which are holomorphic in tubular cones, Izv. Akad. Nauk SSSR Ser. Mat., 1963, 27, 75–100 (in Russian) | Zbl 0149.09602

[25] Vladimirov V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979

[26] Vladimirov V.S., Drozhzhinov Yu.N., Zavyalov B.I., Multidimensional Tauber Theorems for Generalized Functions, Nauka, Moscow, 1986 (in Russian)

[27] Yulmukhametov R.S., Entire functions of several variables with given behavior at infinity, Izv. Ross. Akad. Nauk Ser. Mat., 1996, 60(4), 205–224 (in Russian)

[28] Zharinov V.V., Compact families of locally convex spaces and FS and DFS spaces, Uspekhi Mat. Nauk, 1979, 34(4), 97–131 (in Russian) | Zbl 0412.46003