Consider the first order linear difference equation with general advanced argument and variable coefficients of the form where p(n) is a sequence of nonnegative real numbers, τ(n) is a sequence of positive integers such that and ▿ denotes the backward difference operator ▿x(n) = x(n) − x(n − 1). Sufficient conditions which guarantee that all solutions oscillate are established. Examples illustrating the results are given.
@article{bwmeta1.element.doi-10_2478_s11533-011-0137-5, author = {George Chatzarakis and Ioannis Stavroulakis}, title = {Oscillations of difference equations with general advanced argument}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {807-823}, zbl = {1242.39019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0137-5} }
George Chatzarakis; Ioannis Stavroulakis. Oscillations of difference equations with general advanced argument. Open Mathematics, Tome 10 (2012) pp. 807-823. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0137-5/
[1] Berezansky L., Braverman E., Pinelas S., On nonoscillation of mixed advanced-delay differential equations with positive and negative coefficients, Comput. Math. Appl., 2009, 58(4), 766–775 http://dx.doi.org/10.1016/j.camwa.2009.04.010 | Zbl 1197.34118
[2] Chatzarakis G.E., Koplatadze R., Stavroulakis I.P., Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math., 2008, 235(1), 15–33 http://dx.doi.org/10.2140/pjm.2008.235.15 | Zbl 1153.39010
[3] Chatzarakis G.E., Koplatadze R., Stavroulakis I.P., Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal., 2008, 68(4), 994–1005 http://dx.doi.org/10.1016/j.na.2006.11.055 | Zbl 1144.39003
[4] Dannan F.M., Elaydi S.N., Asymptotic stability of linear difference equations of advanced type, J. Comput. Anal. Appl., 2004, 6(2), 173–187 | Zbl 1088.39502
[5] El’sgol’ts L.E., Introduction to the Theory of Differential Equations with Deviating Arguments, Holden-Day, San Francisco, 1966
[6] Fukagai N., Kusano T., Oscillation theory of first order functional-differential equations with deviating arguments, Ann. Mat. Pura Appl., 1984, 136(1), 95–117 http://dx.doi.org/10.1007/BF01773379 | Zbl 0552.34062
[7] Győri I., Ladas G., Oscillation Theory of Delay Differential Equations, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1991 | Zbl 0780.34048
[8] Koplatadze R.G., Chanturija T.A., Oscillating and monotone solutions of first-order differential equations with deviating argument, Differ. Uravn., 1982, 18(2), 1463–1465 (in Russian) | Zbl 0496.34044
[9] Kulenovic M.R., Grammatikopoulos M.K., Some comparison and oscillation results for first-order differential equations and inequalities with a deviating argument, J. Math. Anal. Appl., 1988, 131(1), 67–84 http://dx.doi.org/10.1016/0022-247X(88)90190-4 | Zbl 0664.34071
[10] Kusano T., On even-order functional-differential equations with advanced and retarded arguments, J. Differential Equations, 1982, 45(1), 75–84 http://dx.doi.org/10.1016/0022-0396(82)90055-9
[11] Ladas G., Stavroulakis I.P., Oscillations caused by several retarded and advanced arguments, J. Differential Equations, 1982, 44(1), 134–152 http://dx.doi.org/10.1016/0022-0396(82)90029-8 | Zbl 0452.34058
[12] Li X., Zhu D., Oscillation and nonoscillation of advanced differential equations with variable coefficients, J. Math. Anal. Appl., 2002, 269(2), 462–488 http://dx.doi.org/10.1016/S0022-247X(02)00029-X | Zbl 1013.34067
[13] Li X., Zhu D., Oscillation of advanced difference equations with variable coefficients, Ann. Differential Equations, 2002, 18(2), 254–263 | Zbl 1010.39001
[14] Onose H., Oscillatory properties of the first-order differential inequalities with deviating argument, Funkcial. Ekvac., 1983, 26(2), 189–195 | Zbl 0525.34051
[15] Zhang B.G., Oscillation of the solutions of the first-order advanced type differential equations, Sci. Exploration, 1982, 2(3), 79–82