The classical Minkowski problem has a natural extension to hedgehogs, that is to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem is much more difficult since it essentially boils down to the question of solutions of certain Monge-Ampère equations of mixed type on the unit sphere of ℝn+1. In this paper, we mainly consider the uniqueness question and give first results.
@article{bwmeta1.element.doi-10_2478_s11533-011-0134-8, author = {Yves Martinez-Maure}, title = {Uniqueness results for the Minkowski problem extended to hedgehogs}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {440-450}, zbl = {1239.35005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0134-8} }
Yves Martinez-Maure. Uniqueness results for the Minkowski problem extended to hedgehogs. Open Mathematics, Tome 10 (2012) pp. 440-450. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0134-8/
[1] Alexandrov A.D., On uniqueness theorems for closed surfaces, Dokl. Akad. Nauk SSSR, 1939, 22, 99–102 (in Russian)
[2] Alexandrov A.D., On the curvature of surfaces, Vestnik Leningrad. Univ., 1966, 21(19), 5–11 (in Russian)
[3] Berger M., A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-642-18245-7
[4] Cheng S.Y., Yau S.T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 1976, 29(5), 495–516 http://dx.doi.org/10.1002/cpa.3160290504 | Zbl 0363.53030
[5] Koutroufiotis D., On a conjectured characterization of the sphere, Math. Ann., 1973, 205(3), 211–217 http://dx.doi.org/10.1007/BF01349231 | Zbl 0257.53056
[6] Langevin R., Levitt G., Rosenberg H., Hérissons et multihérissons (enveloppes parametrées par leur application de Gauss), Banach Center Publ., 1988, 20, 245–253 | Zbl 0658.53004
[7] Lin C.S., The local isometric embedding in ℝ3 of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom., 1985, 21(2), 213–230 | Zbl 0584.53002
[8] Martinez-Maure Y., Hedgehogs of constant width and equichordal points, Ann. Polon. Math., 1997, 67(3), 285–288 | Zbl 0926.52006
[9] Martinez-Maure Y., Indice d’un hérisson: étude et applications, Publ. Mat., 2000, 44(1), 237–255 | Zbl 0974.53003
[10] Martinez-Maure Y., Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris, 2001, 332(1), 41–44
[11] Martinez-Maure Y., Hedgehogs and zonoids, Adv. Math., 2001, 158(1), 1–17 http://dx.doi.org/10.1006/aima.2000.1943 | Zbl 0977.52010
[12] Martinez-Maure Y., Théorie des hérissons et polytopes, C. R. Acad. Sci. Paris, 2003, 336(3), 241–244
[13] Martinez-Maure Y., Geometric study of Minkowski differences of plane convex bodies, Canad. J. Math., 2006, 58(6), 600–624 http://dx.doi.org/10.4153/CJM-2006-025-x | Zbl 1121.52014
[14] Martinez-Maure Y., New notion of index for hedgehogs of ℝ3 and applications, European J. Combin., 2010, 31(4), 1037–1049 http://dx.doi.org/10.1016/j.ejc.2009.11.015 | Zbl 1196.52005
[15] Minkowski H., Volumen und Oberfläche, Math. Ann., 1903, 57(4), 447–495 http://dx.doi.org/10.1007/BF01445180
[16] Panina G., New counterexamples to A.D. Alexandrov’s hypothesis, Adv. Geom., 2005, 5(2), 301–317 http://dx.doi.org/10.1515/advg.2005.5.2.301 | Zbl 1077.52003
[17] Pogorelov A.V., The Minkowski Multidimensional Problem, Scripta Series in Mathematics, John Wiley & Sons, New York-Toronto-London, 1978 | Zbl 0387.53023
[18] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511526282 | Zbl 0798.52001
[19] Stoker J.J., Differential Geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1989
[20] Zuily C., Existence locale de solutions C ∞ pour des équations de Monge-Ampère changeant de type, Comm. Partial Differential Equations, 1989, 14(6), 691–697 http://dx.doi.org/10.1080/03605308908820627 | Zbl 0694.35034