Boundaries of weak peak points in noncommutative algebras of Lipschitz functions
Kassandra Averill ; Ann Johnston ; Ryan Northrup ; Robert Silversmith ; Aaron Luttman
Open Mathematics, Tome 10 (2012), p. 646-655 / Harvested from The Polish Digital Mathematics Library

It has been shown that any Banach algebra satisfying ‖f 2‖ = ‖f‖2 has a representation as an algebra of quaternion-valued continuous functions. Whereas some of the classical theory of algebras of continuous complex-valued functions extends immediately to algebras of quaternion-valued functions, similar work has not been done to analyze how the theory of algebras of complex-valued Lipschitz functions extends to algebras of quaternion-valued Lipschitz functions. Denote by Lip(X, 𝔽 ) the algebra over R of F-valued Lipschitz functions on a compact metric space (X, d), where 𝔽 = ℝ, ℂ, or ℍ, the non-commutative division ring of quaternions. In this work, we analyze a class of subalgebras of Lip(X, 𝔽 ) in which the closure of the weak peak points is the Shilov boundary, and we show that algebras of functions taking values in the quaternions are the most general objects to which the theory of weak peak points extends naturally. This is done by generalizing a classical result for uniform algebras, due to Bishop, which ensures the existence of the Shilov boundary. While the result of Bishop need not hold in general algebras of quaternion-valued Lipschitz functions, we give sufficient conditions on such an algebra for it to hold and to guarantee the existence of the Shilov boundary.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269272
@article{bwmeta1.element.doi-10_2478_s11533-011-0133-9,
     author = {Kassandra Averill and Ann Johnston and Ryan Northrup and Robert Silversmith and Aaron Luttman},
     title = {Boundaries of weak peak points in noncommutative algebras of Lipschitz functions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {646-655},
     zbl = {1252.46042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0133-9}
}
Kassandra Averill; Ann Johnston; Ryan Northrup; Robert Silversmith; Aaron Luttman. Boundaries of weak peak points in noncommutative algebras of Lipschitz functions. Open Mathematics, Tome 10 (2012) pp. 646-655. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0133-9/

[1] Abel M., Jarosz K., Noncommutative uniform algebras, Studia Math., 2004, 162(3), 213–218 http://dx.doi.org/10.4064/sm162-3-2 | Zbl 1054.46031

[2] Albiac F., Briem E., Representations of real Banach algebras, J. Aust. Math. Soc., 2010, 88(3), 289–300 http://dx.doi.org/10.1017/S144678871000011X | Zbl 1207.46042

[3] Albiac F., Briem E., Real Banach algebras as C(K) algebras, Q. J. Math. (in press), DOI: 10.1093/qmath/har005 | Zbl 1254.46058

[4] Bear, H.S., The Silov boundary for a linear space of continuous functions, Amer. Math. Monthly, 1961, 68(5), 483–485 http://dx.doi.org/10.2307/2311109 | Zbl 0100.11002

[5] Browder A., Introduction to Function Algebras, Math. Lecture Note Ser., W.A. Benjamin, New York-Amsterdam, 1969 | Zbl 0199.46103

[6] Frobenius F.G., Über lineare Substitutionen und bilineare Formen, J. Reine Angew. Math., 1878, 84, 1–63 http://dx.doi.org/10.1515/crll.1878.84.1

[7] Gamelin T.W., Uniform Algebras, 2nd ed., Chelsea, New York, 1984 | Zbl 0213.40401

[8] Hurwitz A., Über die Composition der quadratischen Formen von beliebig vielen Variablen, Nachrichten von der Kgl. Gesellschaft der Wissenschaften zu Göttingen, 1898, 309–316

[9] Jarosz K., Function representation of a noncommutative uniform algebra, Proc. Amer. Math. Soc., 2008, 136(2), 605–611 http://dx.doi.org/10.1090/S0002-9939-07-09033-8 | Zbl 1136.46035

[10] Jiménez-Vargas A., Luttman A., Villegas-Vallecillos M., Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math., 2010, 40(6), 1903–1922 http://dx.doi.org/10.1216/RMJ-2010-40-6-1903 | Zbl 1220.46033

[11] Kaniuth E., A Course in Commutative Banach Algebras, Grad. Texts in Math., 246, Springer, New York, 2009 http://dx.doi.org/10.1007/978-0-387-72476-8

[12] Kulkarni S.H., Limaye B.V., Real Function Algebras, Monogr. Textbooks Pure Appl. Math., 168, Marcel Dekker, New York, 1992 | Zbl 0781.46036

[13] Lambert S., Luttman A., Generalized strong boundary points and boundaries of families of continuous functions, Mediterr. J. Math. (in press), DOI: 10.1007/s00009-010-0105-5 | Zbl 1269.46033

[14] Rickart C.E., General Theory of Banach Algebras, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1960

[15] Šilov G., On the extension of maximal ideals, Dokl. Akad. Nauk SSSR, 1940, 29, 83–84 (in Russian) | Zbl 66.0108.03

[16] Weaver N., Lipschitz Algebras, World Scientific, River Edge, 1999

[17] Yates R.B.J., Norm-Preserving Criteria for Uniform Algebra Isomorphisms, PhD thesis, University of Montana, 2009

[18] Żelazko W., Banach Algebras, Elsevier, Amsterdam-London-New York, 1973