We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality: where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational inequality in conjunction with Yosida approximation techniques.
@article{bwmeta1.element.doi-10_2478_s11533-011-0131-y, author = {Lucian Maticiuc and Eduard Rotenstein}, title = {Numerical schemes for multivalued backward stochastic differential systems}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {693-702}, zbl = {1257.65006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0131-y} }
Lucian Maticiuc; Eduard Rotenstein. Numerical schemes for multivalued backward stochastic differential systems. Open Mathematics, Tome 10 (2012) pp. 693-702. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0131-y/
[1] Asiminoaei I., Rascanu A., Approximation and simulation of stochastic variational inequalities - splitting up method, Numer. Funct. Anal. Optim., 1997, 18(3–4), 251–282 http://dx.doi.org/10.1080/01630569708816759 | Zbl 0883.60057
[2] Bouchard B., Menozzi S., Strong approximations of BSDEs in a domain, Bernoulli, 2009, 15(4), 1117–1147 http://dx.doi.org/10.3150/08-BEJ181 | Zbl 1204.60048
[3] Bouchard B., Touzi N., Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl., 2004, 111(2), 175–206 http://dx.doi.org/10.1016/j.spa.2004.01.001 | Zbl 1071.60059
[4] Chitashvili R.J., Lazrieva N.L., Strong solutions of stochastic differential equations with boundary conditions, Stochastics, 1981, 5(4), 225–309 http://dx.doi.org/10.1080/17442508108833184 | Zbl 0479.60062
[5] Constantini C., Pacchiarotti B., Sartoretto F., Numerical approximation for functionals of reflecting diffusion processes, SIAM J. Appl. Math., 1998, 58(1), 73–102 http://dx.doi.org/10.1137/S0036139995291040 | Zbl 0913.60031
[6] Ding D., Zhang Y.Y., A splitting-step algorithm for reflected stochastic differential equations in ℝ +1, Comput. Math. Appl., 2008, 55(11), 2413–2425 http://dx.doi.org/10.1016/j.camwa.2007.08.043 | Zbl 1142.65307
[7] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Grad. Texts in Math., 113, Springer, New York, 1988 | Zbl 0638.60065
[8] Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Appl. Math. (N. Y.), Springer, Berlin, 1992 | Zbl 0752.60043
[9] Lépingle D., Euler scheme for reflected stochastic differential equations, Math. Comput. Simulation, 1995, 38(1–3), 119–126 http://dx.doi.org/10.1016/0378-4754(93)E0074-F | Zbl 0824.60062
[10] Lions P.-L., Sznitman A.-S., Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., 1984, 37(4), 511–537 http://dx.doi.org/10.1002/cpa.3160370408 | Zbl 0598.60060
[11] Maticiuc L., Răşcanu A., Backward stochastic generalized variational inequality, In: Applied Analysis and Differential Equations, Iaşi, September 4–9, 2006, World Scientific, Hackensack, 2007, 217–226 http://dx.doi.org/10.1142/9789812708229_0018 | Zbl 1168.60023
[12] Maticiuc L., Răşcanu A., A stochastic approach to a multivalued Dirichlet-Neumann problem, Stochastic Process. Appl., 2010, 120(6), 777–800 http://dx.doi.org/10.1016/j.spa.2010.02.002 | Zbl 1195.35192
[13] Menaldi J.-L., Stochastic variational inequality for reflected diffusion, Indiana Univ. Math. J., 1983, 32(5), 733–744 http://dx.doi.org/10.1512/iumj.1983.32.32048 | Zbl 0492.60057
[14] Pardoux É., Peng S.G., Adapted solution of a backward stochastic differential equation, Systems Control Lett., 1990, 14(1), 55–61 http://dx.doi.org/10.1016/0167-6911(90)90082-6 | Zbl 0692.93064
[15] Pardoux É., Peng S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, In: Stochastic Partial Differential Equations and their Applications, Charlotte, June 6–8, 1991, Lecture Notes in Control and Inform. Sci., 176, Springer, Berlin, 1992, 200–217 http://dx.doi.org/10.1007/BFb0007334
[16] Pardoux E., Răşcanu A., Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., 1998, 76(2), 191–215 http://dx.doi.org/10.1016/S0304-4149(98)00030-1 | Zbl 0932.60070
[17] Pardoux E., Răşcanu A., Backward stochastic variational inequalities, Stochastics Stochastics Rep., 1999, 67(3–4), 159–167 | Zbl 0948.60049
[18] Rascanu A., Deterministic and stochastic differential equations in Hilbert spaces involving multivalued maximal monotone operators, Panamer. Math. J., 1996, 6(3), 83–119 | Zbl 0859.60060
[19] Răşcanu A., Rotenstein E., The Fitzpatrick function - a bridge between convex analysis and multivalued stochastic differential equations, J. Convex Anal., 2011, 18(1), 105–138 | Zbl 1210.60070
[20] Saisho Y., Stochastic differential equations for multidimensional domain with reflecting boundary, Probab. Theory Related Fields, 1987, 74(3), 455–477 http://dx.doi.org/10.1007/BF00699100
[21] Skorokhod A.V., Stochastic equations for diffusion processes in a bounded region. I&II, Theory Probab. Appl., 1961, 6(3), 264–274; 7(1), 3–23 http://dx.doi.org/10.1137/1106035
[22] SŁominski L., On approximation of solutions of multidimensional SDEs with reflecting boundary conditions, Stochastic Process. Appl., 1994, 50(2), 179–219 | Zbl 0799.60055
[23] Zhang J., Some Fine Properties of Backward Stochastic Differential Equations, PhD thesis, Purdue University, 2001