Asymptotic purity for very general hypersurfaces of ℙn × ℙn of bidegree (k, k)
Michael Burr
Open Mathematics, Tome 10 (2012), p. 530-542 / Harvested from The Polish Digital Mathematics Library

For a complex irreducible projective variety, the volume function and the higher asymptotic cohomological functions have proven to be useful in understanding the positivity of divisors as well as other geometric properties of the variety. In this paper, we study the vanishing properties of these functions on hypersurfaces of ℙn × ℙn. In particular, we show that very general hypersurfaces of bidegree (k, k) obey a very strong vanishing property, which we define as asymptotic purity: at most one asymptotic cohomological function is nonzero for each divisor. This provides evidence for the truth of a conjecture of Bogomolov and also suggests some general conditions for asymptotic purity.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269030
@article{bwmeta1.element.doi-10_2478_s11533-011-0126-8,
     author = {Michael Burr},
     title = {Asymptotic purity for very general hypersurfaces of Pn x Pn of bidegree (k, k)},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {530-542},
     zbl = {1273.14042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0126-8}
}
Michael Burr. Asymptotic purity for very general hypersurfaces of ℙn × ℙn of bidegree (k, k). Open Mathematics, Tome 10 (2012) pp. 530-542. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0126-8/

[1] Andreotti A., Grauert H., Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 1962, 90, 193–259 | Zbl 0106.05501

[2] Bogomolov F., personal communication

[3] Bogomolov F., De Oliveira B., Hyperbolicity of nodal hypersurfaces. J. Reine Angew. Math., 2006, 596, 89–101 http://dx.doi.org/10.1515/CRELLE.2006.053 | Zbl 1108.14013

[4] Bott R., Homogeneous vector bundles, Ann. of Math., 1957, 66(2), 203–248 http://dx.doi.org/10.2307/1969996 | Zbl 0094.35701

[5] Bouche T., Two vanishing theorems for holomorphic vector bundles of mixed sign, Math. Z., 1995, 218(4), 519–526 http://dx.doi.org/10.1007/BF02571920 | Zbl 0823.32013

[6] Boucksom S., On the volume of a line bundle. Internat. J. Math., 2002, 13(10), 1043–1063 http://dx.doi.org/10.1142/S0129167X02001575 | Zbl 1101.14008

[7] Burr M.A., Asymptotic Cohomological Vanishing Theorems and Applications of Real Algebraic Geometry to Computer Science, PhD thesis, Courant Institute of Mathematical Sciences, New York University, 2010

[8] Cutkosky S.D., Zariski decomposition of divisors on algebraic varieties. Duke Math. J., 1986, 53(1), 149–156 http://dx.doi.org/10.1215/S0012-7094-86-05309-3 | Zbl 0604.14002

[9] Cutkosky S.D., Srinivas V., Periodicity of the fixed locus of multiples of a divisor on a surface. Duke Math. J., 1993, 72(3), 641–647 http://dx.doi.org/10.1215/S0012-7094-93-07223-7 | Zbl 0803.14002

[10] Debarre O., Ein L., Lazarsfeld R., Voisin C., Pseudoeffective and nef classes on Abelian varieties, Compos. Math., 2011, 147(6), 1793–1818 http://dx.doi.org/10.1112/S0010437X11005227 | Zbl 1234.14008

[11] Demailly J.-P., Champs magnétiques et inégalités de Morse pour la d″-cohomologie, Ann. Inst. Fourier (Grenoble), 1985, 35(4), 189–229 http://dx.doi.org/10.5802/aif.1034 | Zbl 0565.58017

[12] Demailly J.-P., Holomorphic morse inequalities, In: Several Complex Variables and Complex Geometry. II, Santa Cruz, July 10–30, 1989, Proc. Sympos. Pure Math., 52, American Mathematical Society, Providence, 1991, 93–114

[13] Demailly J.-P., Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, Milan J. Math., 2010, 78(1), 265–277 http://dx.doi.org/10.1007/s00032-010-0118-3 | Zbl 1205.32017

[14] Demailly J.-P., A converse to the Andreotti-Grauert theorem, preprint available at http://arxiv.org/abs/1011.3635

[15] Demailly J.-P., personal communication, 2011

[16] Ein L., Lazarsfeld R., Mustaţă M., Nakamaye M., Popa M., Asymptotic invariants of line bundles, Pure Appl. Math. Q., 2005, 1(2), Special Issue: In memory of Armand Borel. I, 379–403 | Zbl 1139.14008

[17] de Fernex T., Küronya A., Lazarsfeld R., Higher cohomology of divisors on a projective variety, Math. Ann., 2007, 337(2), 443–455 http://dx.doi.org/10.1007/s00208-006-0044-4 | Zbl 1127.14012

[18] Fujita T., Approximating Zariski decomposition of big line bundles, Kodai Math. J., 1994, 17(1), 1–3 http://dx.doi.org/10.2996/kmj/1138039894

[19] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0979-9

[20] Hacon C., McKernan J., Xu C., On the birational automorphisms of varieties of general type, preprint available at http://arxiv.org/abs/1011.1464 | Zbl 1281.14036

[21] Hering M., Küronya A., Payne S., Asymptotic cohomological functions of toric divisors. Adv. Math., 2006, 207(2), 634–645 http://dx.doi.org/10.1016/j.aim.2005.12.007 | Zbl 1105.14068

[22] Iskovskikh V.A., Vanishing theorems, J. Math. Sci. (New York), 2001, 106(5), 3258–3268 http://dx.doi.org/10.1023/A:1017999124636 | Zbl 1047.14008

[23] Kollár J., Vanishing theorems for cohomology groups. In: Algebraic Geometry, Bowdoin, July 8–26, 1985, Proc. Sympos. Pure Math., 46(1), American Mathematical Society, Providence, 1987, 233–243

[24] Küronya A., Asymptotic Cohomological Functions on Projective Varieties, PhD thesis, University of Michigan, 2004

[25] Küronya A., Asymptotic cohomological functions on projective varieties, Amer. J. Math., 2006, 128(6), 1475–1519 http://dx.doi.org/10.1353/ajm.2006.0044

[26] Küronya A., Positivity on subvarieties and vanishing of higher cohomology, preprint available at http://arxiv.org/abs/1012.1102 | Zbl 1291.14018

[27] Lazarsfeld R., Positivity in Algebraic Geometry. I, Ergeb. Math. Grenzgeb. (3), 48, Springer, Berlin, 2004 | Zbl 1066.14021

[28] Lazarsfeld R., Positivity in Algebraic Geometry. II, Ergeb. Math. Grenzgeb. (3), 49, Springer, Berlin, 2004 | Zbl 1093.14500

[29] Mumford D., Abelian Varieties, Tata Inst. Fund. Res. Studies in Math., 5, Hindustan Book Agency, New Delhi, 2008 | Zbl 1177.14001

[30] Nakayama N., Zariski-Decomposition and Abundance, MSJ Mem., 14, Mathematical Society of Japan, Tokyo, 2004

[31] Siu Y.T., Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, In: Arbeitstagung Bonn 1984, Max-Planck-Institut für Mathematik, Bonn, June 15–22, 1984, Lecture Notes in Math., 1111, Springer, Berlin, 1985, 169–192

[32] Takayama S., Pluricanonical systems on algebraic varieties of general type, Invent. Math., 2006, 165(3), 551–587 http://dx.doi.org/10.1007/s00222-006-0503-2 | Zbl 1108.14031

[33] Tanimoto S., personal communication, 2009

[34] Totaro B., Line bundles with partially vanishing cohomology, preprint available at http://arxiv.org/abs/1007.3955 | Zbl 1277.14007

[35] Tsuji H., Pluricanonical systems of projective varieties of general type. I, Osaka J. Math., 2006, 43(4), 967–995 | Zbl 1142.14012

[36] Tsuji H., Pluricanonical systems of projective varieties of general type. II, Osaka J. Math., 2007, 44(3), 723–764 | Zbl 1186.14043

[37] Zariski O., The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., 1962, 76(3), 560–615 http://dx.doi.org/10.2307/1970376 | Zbl 0124.37001