A larger GL 2 large sieve in the level aspect
Goran Djanković
Open Mathematics, Tome 10 (2012), p. 748-760 / Harvested from The Polish Digital Mathematics Library

In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269440
@article{bwmeta1.element.doi-10_2478_s11533-011-0125-9,
     author = {Goran Djankovi\'c},
     title = {A larger GL 2 large sieve in the level aspect},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {748-760},
     zbl = {1280.11024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0125-9}
}
Goran Djanković. A larger GL 2 large sieve in the level aspect. Open Mathematics, Tome 10 (2012) pp. 748-760. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0125-9/

[1] Bombieri E., Friedlander J.B., Iwaniec H., Primes in arithmetic progressions to large moduli, Acta Math., 1986, 156(3–4), 203–251 http://dx.doi.org/10.1007/BF02399204 | Zbl 0588.10042

[2] Conrey J.B., Iwaniec H., Soundararajan K., Asymptotic large sieve, preprint available at http://arxiv.org/abs/1105.1176

[3] Deshouillers J.-M., Iwaniec H., Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math., 1982, 70(2), 219–288 http://dx.doi.org/10.1007/BF01390728 | Zbl 0502.10021

[4] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, American Mathematical Society, Providence, 1997 | Zbl 0905.11023

[5] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 | Zbl 1059.11001

[6] Iwaniec H., Li X., The orthogonality of Hecke eigenvalues, Compos. Math., 2007, 143(3), 541–565 | Zbl 1149.11023

[7] Iwaniec H., Sarnak P., Perspectives on the analytic theory of L-functions, Geom. Funct. Anal., 2000, Special Volume, Part II, 705–741 | Zbl 0996.11036

[8] Oberhettinger F., Tables of Bessel Transforms, Springer, New York-Heidelberg, 1972 http://dx.doi.org/10.1007/978-3-642-65462-6 | Zbl 0261.65003

[9] Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | Zbl 0063.08184