In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.
@article{bwmeta1.element.doi-10_2478_s11533-011-0125-9,
author = {Goran Djankovi\'c},
title = {A larger GL 2 large sieve in the level aspect},
journal = {Open Mathematics},
volume = {10},
year = {2012},
pages = {748-760},
zbl = {1280.11024},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0125-9}
}
Goran Djanković. A larger GL 2 large sieve in the level aspect. Open Mathematics, Tome 10 (2012) pp. 748-760. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0125-9/
[1] Bombieri E., Friedlander J.B., Iwaniec H., Primes in arithmetic progressions to large moduli, Acta Math., 1986, 156(3–4), 203–251 http://dx.doi.org/10.1007/BF02399204 | Zbl 0588.10042
[2] Conrey J.B., Iwaniec H., Soundararajan K., Asymptotic large sieve, preprint available at http://arxiv.org/abs/1105.1176
[3] Deshouillers J.-M., Iwaniec H., Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math., 1982, 70(2), 219–288 http://dx.doi.org/10.1007/BF01390728 | Zbl 0502.10021
[4] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, American Mathematical Society, Providence, 1997 | Zbl 0905.11023
[5] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 | Zbl 1059.11001
[6] Iwaniec H., Li X., The orthogonality of Hecke eigenvalues, Compos. Math., 2007, 143(3), 541–565 | Zbl 1149.11023
[7] Iwaniec H., Sarnak P., Perspectives on the analytic theory of L-functions, Geom. Funct. Anal., 2000, Special Volume, Part II, 705–741 | Zbl 0996.11036
[8] Oberhettinger F., Tables of Bessel Transforms, Springer, New York-Heidelberg, 1972 http://dx.doi.org/10.1007/978-3-642-65462-6 | Zbl 0261.65003
[9] Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | Zbl 0063.08184