Computation of the fundamental solution of electrodynamics for anisotropic materials
Valery Yakhno ; Handan Yaslan ; Tatiana Yakhno
Open Mathematics, Tome 10 (2012), p. 188-203 / Harvested from The Polish Digital Mathematics Library

A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform. Applying the suggested approach, the fundamental solution components are computed in general anisotropic media. Computational examples confirm robustness of the suggested method.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269300
@article{bwmeta1.element.doi-10_2478_s11533-011-0122-z,
     author = {Valery Yakhno and Handan Yaslan and Tatiana Yakhno},
     title = {Computation of the fundamental solution of electrodynamics for anisotropic materials},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {188-203},
     zbl = {1243.78051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0122-z}
}
Valery Yakhno; Handan Yaslan; Tatiana Yakhno. Computation of the fundamental solution of electrodynamics for anisotropic materials. Open Mathematics, Tome 10 (2012) pp. 188-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0122-z/

[1] Burridge R., Qian J., The fundamental solution of the time-dependent system of crystal optics, European J. Appl. Math., 2006, 17(1), 63–94 http://dx.doi.org/10.1017/S0956792506006486 | Zbl 1160.78001

[2] Cohen G.C., Higher-Order Numerical Methods for Transient Wave Equations, Sci. Comput., Springer, Berlin, 2002 | Zbl 0985.65096

[3] Cohen G.C., Heikkola E., Joly P., Neittaanmäki P. (Eds.), Mathematical and Numerical Aspects of Waves Propagation, Jyväskylä, June 30–July 4, 2003, Springer, Berlin, 2003 | Zbl 1029.00072

[4] Cottis P.G., Kondylis G.D., Properties of the dyadic Green’s function for an unbounded anisotropic medium, IEEE Trans. Antennas and Propagation, 1995, 43(2), 154–161 http://dx.doi.org/10.1109/8.366377 | Zbl 0944.78514

[5] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. 2: Partial Differential Equations, Interscience, New York-London, 1962 | Zbl 0099.29504

[6] Degerfeldt D., Rylander T., A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit timestepping for Maxwell’s equations, J. Comput. Phys., 2006, 220(1), 383–393 http://dx.doi.org/10.1016/j.jcp.2006.05.016 | Zbl 1116.78021

[7] Dmitriev V.I., Silkin A.N., Farzan R., Tensor Green function for the system of Maxwell’s equations in a layered medium, Comput. Math. Model., 2002, 13(2), 107–118 http://dx.doi.org/10.1023/A:1015253228544 | Zbl 1018.78004

[8] Dolgaev S.I., Lyalin A.A., Simakin A.V., Shafeev G.A., Fast etching of sapphire by a visible range quasi-cw laser radiation, Applied Surface Science, 1996, 96–98, 491–495 http://dx.doi.org/10.1016/0169-4332(95)00501-3

[9] Haba Z., Green functions and propagation of waves in strongly inhomogeneous media, J. Phys. A, 2004, 37(39), 9295–9302 http://dx.doi.org/10.1088/0305-4470/37/39/015 | Zbl 1064.78005

[10] Hesthaven J.S., Warburton T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 2002, 181(1), 186–221 http://dx.doi.org/10.1006/jcph.2002.7118

[11] Kong J.A., Electromagnetic Wave Theory, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1986

[12] Li L.-W., Liu S., Leong M.-S., Yeo T.-S., Circular cylindrical waveguide filled with uniaxial anisotropic media electromagnetic fields and dyadic Green’s functions, IEEE Trans. Microwave Theory Tech., 2001, 49(7), 1361–1364 http://dx.doi.org/10.1109/22.932239

[13] Ludwig D., Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., 1961, 14(2), 113–124 http://dx.doi.org/10.1002/cpa.3160140203 | Zbl 0112.21202

[14] Melrose R.B., Uhlmann G.A., Microlocal structure of involutive conical refraction, Duke Math. J., 1979, 46(3), 571–582 http://dx.doi.org/10.1215/S0012-7094-79-04630-1 | Zbl 0422.58026

[15] Monk P., Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003 | Zbl 1024.78009

[16] Ortner N., Wagner P., Fundamental matrices of homogeneous hyperbolic systems. Applications to crystal optics, elastodynamics, and piezoelectromagnetism, ZAMM Z. Angew. Math. Mech., 2004, 84(5), 314–346 http://dx.doi.org/10.1002/zamm.200310130 | Zbl 1066.46028

[17] Reed M., Simon B., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975 | Zbl 0308.47002

[18] Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, 2000 | Zbl 0963.78001

[19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Macmillan, New York, 1963 | Zbl 0111.29008

[20] Uhlmann G.A., Light intensity distribution in conical refraction, Comm. Pure Appl. Math., 1982, 35(1), 69–80 http://dx.doi.org/10.1002/cpa.3160350104 | Zbl 0516.35055

[21] Vladimirov V.S., Equations of Mathematical Physics, Pure and Applied Mathematics, 3, Marcel Dekker, New York, 1971

[22] Vladimirov V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979

[23] Wijnands F., Pendry J.B., Garcia-Vidal F.J., Bell P.M., Roberts P.J., Martiín Moreno L., Green’s functions for Maxwell’s equations: application to spontaneous emission, Optical and Quantum Electronics, 1997, 29, 199–216 http://dx.doi.org/10.1023/A:1018506222632

[24] Yakhno V.G., Constructing Green’s function for the time-dependent Maxwell system in anisotropic dielectrics, J. Phys. A, 2005, 38(10), 2277–2287 http://dx.doi.org/10.1088/0305-4470/38/10/015 | Zbl 1060.78003

[25] Yakhno V.G., Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials, Internat. J. Engrg. Sci., 2008, 46(5), 411–426 http://dx.doi.org/10.1016/j.ijengsci.2007.12.005 | Zbl 1213.78029

[26] Yakhno V.G., Yakhno T.M., Modelling and simulation of electric and magnetic fields in homogeneous non-dispersive anisotropic materials, Comput. & Structures, 2007, 85(21–22), 1623–1634 http://dx.doi.org/10.1016/j.compstruc.2007.02.019

[27] Yakhno V.G., Yakhno T.M., Kasap M., A novel approach for modeling and simulation of electromagnetic waves in anisotropic dielectrics, Internat. J. Solids Structures, 2006, 43(20), 6261–6276 http://dx.doi.org/10.1016/j.ijsolstr.2005.07.028 | Zbl 1121.78322

[28] Yee K.S., Numerical solution of initial boundary value problems involving MaxwellŠs equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 http://dx.doi.org/10.1109/TAP.1966.1138693 | Zbl 1155.78304

[29] Yim Y.-S., Shin S.-Y., Lithium niobate integrated-optic voltage sensor with variable sensing ranges, Optics Communications, 1998, 152(4–6), 225–228 http://dx.doi.org/10.1016/S0030-4018(98)00198-9

[30] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000 | Zbl 0991.74002