We present a sufficient regularity condition for interval matrices which generalizes two previously known ones. It is formulated in terms of positive definiteness of a certain point matrix, and can also be used for checking positive definiteness of interval matrices. Comparing it with Beeck’s strong regularity condition, we show by counterexamples that none of the two conditions is more general than the other one.
@article{bwmeta1.element.doi-10_2478_s11533-011-0118-8, author = {Raena Farhadsefat and Taher Lotfi and Jiri Rohn}, title = {A note on regularity and positive definiteness of interval matrices}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {322-328}, zbl = {1256.15017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0118-8} }
Raena Farhadsefat; Taher Lotfi; Jiri Rohn. A note on regularity and positive definiteness of interval matrices. Open Mathematics, Tome 10 (2012) pp. 322-328. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0118-8/
[1] Beeck H., Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, In: Interval Mathematics, Karlsruhe, 1975, Lecture Notes in Comput. Sci., 29, Springer, Berlin, 1975, 150–159 | Zbl 0303.65025
[2] Fiedler M., Nedoma J., Ramík J., Rohn J., Zimmermann K., Linear Optimization Problems with Inexact Data, Springer, New York, 2006 | Zbl 1106.90051
[3] Garey M.R., Johnson D.S., Computers and Intractability, Ser. Books Math. Sci., W.H. Freeman and Company, San Francisco, 1979
[4] Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, Cambridge, 1985 | Zbl 0576.15001
[5] Oettli W., Prager W., Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math., 1964, 6, 405–409 http://dx.doi.org/10.1007/BF01386090 | Zbl 0133.08603
[6] Poljak S., Rohn J., Checking robust nonsingularity is NP-hard, Math. Control Signals Systems, 1993, 6(1), 1–9 http://dx.doi.org/10.1007/BF01213466 | Zbl 0780.93027
[7] Rex G., Rohn J., Sufficient conditions for regularity and singularity of interval matrices, SIAM J. Matrix Anal. Appl., 1999, 20(2), 437–445 http://dx.doi.org/10.1137/S0895479896310743 | Zbl 0924.15003
[8] Rohn J., Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl., 1994, 15(1), 175–184 http://dx.doi.org/10.1137/S0895479891219216 | Zbl 0796.65065
[9] Rohn J., Forty necessary and sufficient conditions for regularity of interval matrices: a survey, Electron. J. Linear Algebra, 2009, 18, 500–512 | Zbl 1189.65088
[10] Rump S.M., Verification methods for dense and sparse systems of equations, In: Topics in Validated Computations, Oldenburg, 1993, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 63–135