An envelope for the spectrum of a matrix
Panayiotis Psarrakos ; Michael Tsatsomeros
Open Mathematics, Tome 10 (2012), p. 292-302 / Harvested from The Polish Digital Mathematics Library

We introduce and study an envelope-type region ɛ(A) in the complex plane that contains the eigenvalues of a given n×n complex matrix A. ɛ(A) is the intersection of an infinite number of regions defined by cubic curves. The notion and method of construction of ɛ(A) extend the notion of the numerical range of A, F(A), which is known to be an intersection of an infinite number of half-planes; as a consequence, ɛ(A) is contained in F(A) and represents an improvement in localizing the spectrum of A.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269630
@article{bwmeta1.element.doi-10_2478_s11533-011-0111-2,
     author = {Panayiotis Psarrakos and Michael Tsatsomeros},
     title = {An envelope for the spectrum of a matrix},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {292-302},
     zbl = {1242.15008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0111-2}
}
Panayiotis Psarrakos; Michael Tsatsomeros. An envelope for the spectrum of a matrix. Open Mathematics, Tome 10 (2012) pp. 292-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0111-2/

[1] Adam M., Tsatsomeros M.J., An eigenvalue inequality and spectrum localization for complex matrices, Electron. J. Linear Algebra, 2006, 15, 239–250 | Zbl 1142.15305

[2] Brown E.S., Spitkovsky I.M., On flat portions on the boundary of the numerical range, Linear Algebra Appl., 2004, 390, 75–109 http://dx.doi.org/10.1016/j.laa.2004.04.009 | Zbl 1059.15031

[3] Horn R.A., Johnson C.R., Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 http://dx.doi.org/10.1017/CBO9780511840371 | Zbl 0729.15001

[4] Johnson C.R., Numerical determination of the field of values of a general complex matrix, SIAM J. Numer. Anal., 1978, 15(3), 595–602 http://dx.doi.org/10.1137/0715039 | Zbl 0389.65018

[5] Levinger B.W., An inequality for nonnegative matrices, Notices Amer. Math. Soc., 1970, 17, 260

[6] McDonald J.J., Psarrakos P.J., Tsatsomeros M.J., Almost skew-symmetric matrices, Rocky Mountain J. Math., 2004, 34(1), 269–288 | Zbl 1058.15029

[7] Milne J.S., Elliptic Curves, BookSurge, Charleston, 2006

[8] Psarrakos P.J., Tsatsomeros M.J., Bounds for Levinger’s function of nonnegative almost skew-symmetric matrices, Linear Algebra Appl., 2006, 416, 759–772 http://dx.doi.org/10.1016/j.laa.2005.12.018 | Zbl 1102.15006

[9] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 http://dx.doi.org/10.1142/9781848161122

[10] Tretter C., Wagenhofer M., The block numerical range of an n×n block operator matrix, SIAM J. Matrix Anal. Appl., 2003, 24(4), 1003–1017 http://dx.doi.org/10.1137/S0895479801394076 | Zbl 1051.47003