Harmonicity of vector fields on four-dimensional generalized symmetric spaces
Giovanni Calvaruso
Open Mathematics, Tome 10 (2012), p. 411-425 / Harvested from The Polish Digital Mathematics Library

Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269059
@article{bwmeta1.element.doi-10_2478_s11533-011-0109-9,
     author = {Giovanni Calvaruso},
     title = {Harmonicity of vector fields on four-dimensional generalized symmetric spaces},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {411-425},
     zbl = {1246.53083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0109-9}
}
Giovanni Calvaruso. Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Open Mathematics, Tome 10 (2012) pp. 411-425. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0109-9/

[1] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonicity of unit vector fields with respect to Riemannian g-natural metrics, Differential Geom. Appl., 2009, 27(1), 157–169 http://dx.doi.org/10.1016/j.difgeo.2008.06.016 | Zbl 1185.53070

[2] Abbassi M.T.K., Calvaruso G., Perrone D., Some examples of harmonic maps for g-natural metrics, Ann. Math. Blaise Pascal, 2009, 16(2), 305–320 http://dx.doi.org/10.5802/ambp.269 | Zbl 1183.58008

[3] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonic maps defined by the geodesic flow, Houston J. Math, 2010, 36(1), 69–90 | Zbl 1251.53038

[4] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics, Q. J. Math., 2011, 62(2), 259–288 http://dx.doi.org/10.1093/qmath/hap040 | Zbl 1226.53062

[5] Apostolov V., Armstrong J., Drăghici T., Local rigidity of certain classes of almost Kähler 4-manifolds, Ann. Global Anal. Geom., 2002, 21(2), 151–176 http://dx.doi.org/10.1023/A:1014779405043 | Zbl 1032.53016

[6] Benyounes M., Loubeau E., Wood C.M., Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., 2007, 25(3), 322–334 http://dx.doi.org/10.1016/j.difgeo.2006.11.010 | Zbl 1128.53037

[7] Calvaruso G., Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, J. Geom. Phys., 2011, 61(2), 498–515 http://dx.doi.org/10.1016/j.geomphys.2010.11.001 | Zbl 1221.53093

[8] Calvaruso G., De Leo B., Curvature properties of four-dimensional generalized symmetric spaces, J. Geom., 2008, 90, 30–46 http://dx.doi.org/10.1007/s00022-008-2046-8 | Zbl 1166.53317

[9] Calvaruso G., Marinosci R.A., Homogeneous geodesics in five-dimensional generalized symmetric spaces, Balkan J. Geom. Appl., 2002, 8(1), 1–19 | Zbl 1060.53041

[10] Calviño-Louzao E., García-Río E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Local rigidity and nonrigidity of symplectic pairs, Ann. Global Anal. Geom. (in press), DOI: 10.1007/s10455-011-9279-8 | Zbl 1237.53026

[11] Černý J., Kowalski O., Classification of generalized symmetric pseudo-Riemannian spaces of dimension n ≤ 4, Tensor (N.S.), 1982, 38, 256–267 | Zbl 0505.53024

[12] Chaichi M., García-Río E., Matsushita Y., Curvature properties of four-dimensional Walker metrics, Classical Quantum Gravity, 2005, 22(3), 559–577 http://dx.doi.org/10.1088/0264-9381/22/3/008 | Zbl 1086.83031

[13] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A, 2005, 38(4), 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005 | Zbl 1068.53049

[14] De Leo B., Marinosci R.A., Homogeneous geodesics of four-dimensional generalized symmetric pseudo-Riemannian spaces, Publ. Math. Debrecen, 2008, 73(3–4), 341–360 | Zbl 1199.53088

[15] De Leo B., Van der Veken J., Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces, preprint available at https://perswww.kuleuven.be/~u0043959/Artikels | Zbl 1247.53076

[16] Gil-Medrano O., Relationship between volume and energy of vector fields, Differential Geom. Appl., 2001, 15(2), 137–152 http://dx.doi.org/10.1016/S0926-2245(01)00053-5 | Zbl 1066.53068

[17] Gil-Medrano O., Unit vector fields that are critical points of the volume and of the energy: characterization and examples, In: Complex, Contact and Symmetric Manifolds, Progr. Math., 234, Birkhäuser, Boston, 2005, 165–186 http://dx.doi.org/10.1007/0-8176-4424-5_12

[18] Gil-Medrano O., Gonzáles-Dávila J.C., Vanhecke L., Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math., 2001, 27(2), 377–409 | Zbl 1015.53030

[19] Gil-Medrano O., Hurtado A., Spacelike energy of timelike unit vector fields on a Lorentzian manifold, J. Geom. Phys., 2004, 51(1), 82–100 http://dx.doi.org/10.1016/j.geomphys.2003.09.008 | Zbl 1076.53086

[20] Gil-Medrano O., Hurtado A., Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields, Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135(4), 789–813 http://dx.doi.org/10.1017/S0308210500004121 | Zbl 1122.53037

[21] González C., Chinea D., Homogeneous structures on generalized symmetric spaces, In: Proceedings of the 12th Portuguese-Spanish Conference on Mathematics, Vol. II, Braga, 1987, Univ. Minho, Braga, 1987, 572–578 (in Spanish)

[22] Han D.-S., Yim J.-W., Unit vector fields on spheres, which are harmonic maps, Math. Z., 1998, 227(1), 83–92 http://dx.doi.org/10.1007/PL00004369 | Zbl 0891.53024

[23] Ishihara T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ., 1979, 13, 23–27 | Zbl 0427.53019

[24] Komrakov B. Jr., Einstein-Maxwell equation on four-dimensional homogeneous spaces, Lobachevskii J. Math., 2001, 8, 33–165 | Zbl 1011.83005

[25] Kotschick D., Terzic S., On formality of generalized symmetric spaces, Math. Proc. Cambridge Philos. Soc., 2003, 134(3), 491–505 http://dx.doi.org/10.1017/S0305004102006540 | Zbl 1042.53035

[26] Kowalski O., Generalized Symmetric Spaces, Lectures Notes in Math., 805, Springer, Berlin-Heidelberg-New York, 1980 | Zbl 0431.53042

[27] Nouhaud O., Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, 1977, 284(14), A815–A818 | Zbl 0349.53015

[28] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983

[29] Terzich S., Real cohomology of generalized symmetric spaces, Fundam. Prikl. Mat., 2001, 7(1), 131–157 (in Russian) | Zbl 1010.57016

[30] Terzich S., Pontryagin classes of generalized symmetric spaces, Mat. Zametki, 2001, 69(3–4), 613–621 (in Russian)

[31] Wiegmink G., Total bending of vector fields on Riemannian manifolds, Math. Ann., 1995, 303(2), 325–344 http://dx.doi.org/10.1007/BF01460993 | Zbl 0834.53034

[32] Wood C.M., On the energy of a unit vector field, Geom. Dedicata, 1997, 64(3), 319–330 http://dx.doi.org/10.1023/A:1017976425512