Let A be an n×n irreducible nonnegative (elementwise) matrix. Borobia and Moro raised the following question: Suppose that every diagonal of A contains a positive entry. Is A similar to a positive matrix? We give an affirmative answer in the case n = 4.
@article{bwmeta1.element.doi-10_2478_s11533-011-0108-x, author = {Raphael Loewy}, title = {On a nonnegative irreducible matrix that is similar to a positive matrix}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {303-311}, zbl = {1246.15033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0108-x} }
Raphael Loewy. On a nonnegative irreducible matrix that is similar to a positive matrix. Open Mathematics, Tome 10 (2012) pp. 303-311. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0108-x/
[1] Borobia A., Moro J., On nonnegative matrices similar to positive matrices, Linear Algebra Appl., 1997, 266, 365–379 http://dx.doi.org/10.1016/S0024-3795(97)00362-5 | Zbl 0887.15019
[2] Brualdi R.A., Ryser H.J., Combinatorial Matrix Theory, Encyclopedia Math. Appl., 39, Cambridge University Press, Cambridge, 1991
[3] Laffey T.J., Extreme nonnegative matrices, Linear Algebra Appl., 1998, 275–276, 349–357 http://dx.doi.org/10.1016/S0024-3795(97)10059-3
[4] Laffey T.J., Loewy R., Šmigoc H., Nonnegative matrices that are similar to positive matrices, SIAM J. Matrix Anal. Appl., 2009, 31(2), 629–649 http://dx.doi.org/10.1137/070692807 | Zbl 1190.15036