Some application driven fast algorithms developed by the author and his collaborators for elliptic partial differential equations are briefly reviewed here. Subsequent use of the ideas behind development of these algorithms for further development of other algorithms some of which are currently in progress is briefly mentioned. Serial and parallel implementation of these algorithms and their applications to some pure and applied problems are also briefly reviewed.
@article{bwmeta1.element.doi-10_2478_s11533-011-0103-2, author = {Prabir Daripa}, title = {A brief review of some application driven fast algorithms for elliptic partial differential equations}, journal = {Open Mathematics}, volume = {10}, year = {2012}, pages = {204-216}, zbl = {06052609}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0103-2} }
Prabir Daripa. A brief review of some application driven fast algorithms for elliptic partial differential equations. Open Mathematics, Tome 10 (2012) pp. 204-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0103-2/
[1] Anderes E., Coram M.A., Two-dimensional density estimation using smooth invertible transformation, J. Statist. Plann. Inference, 2011, 141(3), 1183–1193 http://dx.doi.org/10.1016/j.jspi.2010.09.019 | Zbl 1206.62057
[2] Badea L., Daripa P., On a boundary control approach to domain embedding method, SIAM J. Control Optim., 2001, 40(2), 421–449 http://dx.doi.org/10.1137/S0363012999357380 | Zbl 1002.93026
[3] Badea L., Daripa P., A fast algorithm for two-dimensional elliptic problems, Numer. Algorithms, 2002, 30(3–4), 199–239 http://dx.doi.org/10.1023/A:1020176803736 | Zbl 1079.65123
[4] Badea L., Daripa P., On a Fourier method of embedding domains using an optimal distributed control, Numer. Algorithms, 2003, 32(2–4), 261–273 http://dx.doi.org/10.1023/A:1024002802603 | Zbl 1079.65124
[5] Badea L., Daripa P., A domain embedding method using the optimal distributed control and a fast algorithm, Numer. Algorithms, 2004, 36(2), 95–112 http://dx.doi.org/10.1023/B:NUMA.0000033094.75324.48 | Zbl 1052.93021
[6] Borges L., Daripa P., A parallel version of a fast algorithm for singular integral transforms, Numer. Algorithms, 2000, 23(1), 71–96 http://dx.doi.org/10.1023/A:1019143832124 | Zbl 0948.65142
[7] Borges L., Daripa P., A fast parallel algorithm for the Poisson equation on a disk, J. Comput. Phys., 2001, 169(1), 151–192 http://dx.doi.org/10.1006/jcph.2001.6720 | Zbl 0980.65133
[8] Daripa P., On applications of a complex variable method in compressible flows, J. Comput. Phys., 1990, 88(2), 337–361 http://dx.doi.org/10.1016/0021-9991(90)90183-2
[9] Daripa P., A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane, SIAM J. Sci. Statist. Comput., 1992, 13(6), 1418–1432 http://dx.doi.org/10.1137/0913080 | Zbl 0762.65013
[10] Daripa P., A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings, J. Comput. Phys., 1993, 106(2), 355–365 | Zbl 0777.65010
[11] Daripa P., Dash R.K., A numerical study of pulsatile blood flow in an eccentric catheterized artery using a fast algorithm, J. Engrg. Math., 2002, 42(1), 1–22 http://dx.doi.org/10.1023/A:1014332225766 | Zbl 1045.76032
[12] Daripa P., Mashat D., Singular integral transforms and fast numerical algorithms, Numer. Algorithms, 1998, 18(2), 133–157 http://dx.doi.org/10.1023/A:1019117414918 | Zbl 0916.65127
[13] Daripa P., Mashat D., An efficient and novel numerical method for quasiconformal mappings of doubly connected domains, Numer. Algorithms, 1998, 18(2), 159–178 http://dx.doi.org/10.1023/A:1019169431757 | Zbl 0931.30010
[14] Du K., A simple numerical method for complex geometrical optics solutions to the conductivity equation, SIAM J. Sci. Comput., 2011, 33(1), 328–341 http://dx.doi.org/10.1137/100802256 | Zbl 1236.78001
[15] Golberg M.A. (Ed.), Solution Methods for Integral Equations, Math. Concepts Methods Sci. Engrg., 18, Plenum Press, New York, 1978
[16] Golberg M.A. (Ed.), Numerical Solution of Integral Equations, Math. Concepts Methods Sci. Engrg., 42, Plenum Press, New York, 1990
[17] Greengard L., The Rapid Evaluation of Potential Fields in Particle Systems, ACM Disting. Diss., MIT Press, Cambridge, 1988 | Zbl 1001.31500
[18] Greengard L., Kropinski M.C., Mayo A., Integral equation methods for Stokes flow and isotropic elasticity in the plane, J. Comput. Phys., 1996, 125(2), 403–414 http://dx.doi.org/10.1006/jcph.1996.0102 | Zbl 0847.76066
[19] Greengard L., Rokhlin V., A fast algorithm for particle simulations, J. Comput. Phys., 1987, 73(2), 325–348 http://dx.doi.org/10.1016/0021-9991(87)90140-9 | Zbl 0629.65005
[20] Greengard L., Rokhlin V., A new version of the fast multipole method for the Laplace equation in three dimensions, In: Acta Numer., 6, Cambridge University Press, Cambridge, 1997, 229–269 | Zbl 0889.65115
[21] Hackbusch W., Integral Equations, Internat. Ser. Numer. Math., 120, Birkhäuser, Basel, 1995 http://dx.doi.org/10.1007/978-3-0348-9215-5 | Zbl 0823.65139
[22] Hwang K., Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-Hill, New York, 1993
[23] Uhlmann G., Electrical impedance tomography and Calderón’s problem, Inverse Problems, 2009, 25(12), #123011 | Zbl 1181.35339