The norm convergence of a Magnus expansion method
András Bátkai ; Eszter Sikolya
Open Mathematics, Tome 10 (2012), p. 150-158 / Harvested from The Polish Digital Mathematics Library

We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269757
@article{bwmeta1.element.doi-10_2478_s11533-011-0101-4,
     author = {Andr\'as B\'atkai and Eszter Sikolya},
     title = {The norm convergence of a Magnus expansion method},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {150-158},
     zbl = {1264.47046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0101-4}
}
András Bátkai; Eszter Sikolya. The norm convergence of a Magnus expansion method. Open Mathematics, Tome 10 (2012) pp. 150-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0101-4/

[1] Bátkai A., Csomós P., Farkas B., Nickel G., Operator splitting for non-autonomous evolution equations, J. Funct. Anal., 2011, 260(7), 2163–2190 http://dx.doi.org/10.1016/j.jfa.2010.10.008 | Zbl 1232.65103

[2] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer, New York, 2000 | Zbl 0952.47036

[3] Faragó I., Horváth R., Havasi Á., Numerical solution of the Maxwell equations in time-varying medium using Magnus expansion, Cent. Eur. J. Math., 2012, 10(1), 137–149 http://dx.doi.org/10.2478/s11533-011-0074-3 | Zbl 1243.78049

[4] Hochbruck M., Lubich Ch., On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 2003, 41(3), 945–963 http://dx.doi.org/10.1137/S0036142902403875 | Zbl 1049.65064

[5] Hochbruck M., Ostermann A., Exponential integrators, Acta Numer., 2010, 19, 209–286 http://dx.doi.org/10.1017/S0962492910000048 | Zbl 1242.65109

[6] Iserles A., Marthinsen A., Nørsett S.P., On the implementation of the method of Magnus series for linear differential equations, BIT, 1999, 39(2), 281–304 http://dx.doi.org/10.1023/A:1022393913721 | Zbl 0933.65077

[7] Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A., Lie-group methods, Acta Numer., 2000, 9, 215–365 http://dx.doi.org/10.1017/S0962492900002154 | Zbl 1064.65147

[8] Magnus W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 1954, 7(4), 649–673 http://dx.doi.org/10.1002/cpa.3160070404 | Zbl 0056.34102

[9] Nickel G., Evolution semigroups and product formulas for nonautonomous Cauchy problems, Math. Nachr., 2000, 212, 101–116 http://dx.doi.org/10.1002/(SICI)1522-2616(200004)212:1<101::AID-MANA101>3.0.CO;2-3