Let X, Y be two Banach spaces. We say that Y is a quasi-quotient of X if there is a continuous operator R: X → Y such that its range, R(X), is dense in Y. Let X be a nonseparable Banach space, and let U, W be closed subspaces of X and Y, respectively. We prove that if X has the Controlled Separable Projection Property (CSPP) (this is a weaker notion than the WCG property) and Y is a quasi-quotient of X, then the structure of Y resembles the structure of a separable Banach space: (a) Y/W is norm-separable iff its dual W ⊥ is weak*-separable, (b) every weak*-separable subset of B Y* is weak*-metrizable, (c) every weak*-null sequence in the unit sphere of Y* contains a “nice“ subsequence; and (d) if U is separable, then X/U also has the CSPP. Property (a) yields an easy way of obtaining separable quotients in a class of Banach spaces. We also study the CSPP for C(K)-spaces, where K is a Mrówka compact space, e.g., we prove that the CSPP is not a three-space property.
@article{bwmeta1.element.doi-10_2478_s11533-011-0096-x, author = {Jes\'us Ferrer and Marek W\'ojtowicz}, title = {The controlled separable projection property for Banach spaces}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1252-1266}, zbl = {1253.46024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0096-x} }
Jesús Ferrer; Marek Wójtowicz. The controlled separable projection property for Banach spaces. Open Mathematics, Tome 9 (2011) pp. 1252-1266. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0096-x/
[1] Argyros S., Mercourakis S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math., 1993, 23(2), 395–446 http://dx.doi.org/10.1216/rmjm/1181072569 | Zbl 0797.46009
[2] Banakh T., Plichko A., Zagorodnyuk A., Zeros of quadratic functionals on non-separable spaces, Colloq. Math., 2004, 100(1), 141–147 http://dx.doi.org/10.4064/cm100-1-13 | Zbl 1066.46040
[3] Castillo J.M.F., González M., Three-Space Problems in Banach Space Theory, Lecture Notes in Math., 1667, Springer, Berlin-Heidelberg-New York, 1997 | Zbl 0914.46015
[4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Scientific & Technical, Harlow, 1993 | Zbl 0782.46019
[5] van Douwen E.K., The integers and topology, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 111–167
[6] Dow A., Vaughan J.E., Mrówka maximal almost disjoint families for uncountable cardinals, Topology Appl., 2010, 157(8), 1379–1394 http://dx.doi.org/10.1016/j.topol.2009.08.024 | Zbl 1196.54060
[7] Fajardo R.A.S., An indecomposable Banach space of continuous functions which has small density, Fund. Math., 2009, 202(1), 43–63 http://dx.doi.org/10.4064/fm202-1-2 | Zbl 1159.03034
[8] Ferrer J., Zeros of real polynomials on C(K)-spaces, J. Math. Anal. Appl., 2007, 336(2), 788–796 http://dx.doi.org/10.1016/j.jmaa.2007.02.083 | Zbl 1161.46024
[9] Ferrer J., On the controlled separable projection property for some C(K) spaces, Acta Math. Hungar., 2009, 124(1–2), 145–154 http://dx.doi.org/10.1007/s10474-009-8165-3 | Zbl 1265.26009
[10] Ferrer J., Kakol J., López Pellicer M., Wójtowicz M., On a three-space property for Lindelöf Σ-spaces, (WCG)-spaces, and the Sobczyk property, Funct. Approx. Comment. Math., 2011, 44(2), 289–306 | Zbl 1234.46018
[11] Finol C., Wójtowicz M., The structure of nonseparable Banach spaces with uncountable unconditional bases, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RASCAM, 2005, 99(1), 15–22 | Zbl 1098.46015
[12] Frankiewicz R., Zbierski P., Hausdorff Gaps and Limits, Stud. Logic Found. Math., 132, North-Holland, Amsterdam, 1994 http://dx.doi.org/10.1016/S0049-237X(08)70177-0 | Zbl 0821.54001
[13] Hagler J., Sullivan F., Smoothness and weak* sequential compactness, Proc. Amer. Math. Soc., 1980, 78(4), 497–503 | Zbl 0463.46010
[14] Hrušák H., Szeptycki P.J., Tamariz-Mascarúa Á., Spaces of continuous functions defined on Mrówka spaces, Topology Appl., 2005, 148, 239–252 http://dx.doi.org/10.1016/j.topol.2004.09.009 | Zbl 1068.54022
[15] Johnson W.B., On quasi-complements, Pacific J. Math., 1973, 48(1), 113–118 | Zbl 0283.46008
[16] Johnson W.B., Rosenthal H.P., On Ω*-basic sequences and their applications to the study of Banach spaces, Studia Math., 1972, 43, 77–92
[17] Josefson B., Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math., 1975, 13, 79–89 http://dx.doi.org/10.1007/BF02386198 | Zbl 0303.46018
[18] Kalton N.J., Peck N.T., Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc., 1979, 255, 1–30 http://dx.doi.org/10.1090/S0002-9947-1979-0542869-X | Zbl 0424.46004
[19] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z | Zbl 1064.46009
[20] Kuratowski K., Mostowski A., Set Theory, 2nd ed., Polish Scientific Publishers, Warsaw, 1976
[21] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I, Ergeb. Math. Grenzgeb., 92, Springer, Berlin, 1977 | Zbl 0362.46013
[22] Mrówka S., On completely regular spaces, Fund. Math., 1954, 41, 105–106 | Zbl 0055.41304
[23] Mrówka S., Some set-theoretic constructions in topology, Fund. Math., 1977, 94(2), 83–92 | Zbl 0348.54017
[24] Mujica J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid, 1997, 10(2), 299–330 | Zbl 0908.46007
[25] Nissenzweig A., w* sequential convergence, Israel J. Math., 1975, 22(3–4), 266–272 http://dx.doi.org/10.1007/BF02761594
[26] Pełczynski A., Projections in certain Banach spaces, Studia Math., 1960, 19, 209–228 | Zbl 0104.08503
[27] Plebanek G., A construction of a Banach space C(K) with few operators, Topology Appl., 2004, 143, 217–239 http://dx.doi.org/10.1016/j.topol.2004.03.001 | Zbl 1064.46011
[28] Rosenthal H.P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 1970, 37, 13–36 | Zbl 0227.46027
[29] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991
[30] Saxon S.A., Wilansky A., The equivalence of some Banach space problems, Colloq. Math., 1977, 37(2), 217–226 | Zbl 0373.46027
[31] Semadeni Z., Banach Spaces of Continuous Functions. I, Monogr. Mat., 55, Polish Scientific Publishers, Warszawa, 1971 | Zbl 0225.46030
[32] Sliwa W., (LF)-Spaces and the Separable Quotient Problem, Ph.D. thesis, Adam Mickiewicz University, Poznan, 1996 (in Polish)
[33] Valdivia M., Resolutions of the identity in certain Banach spaces, Collect. Math., 1988, 39(2), 127–140 | Zbl 0718.46006
[34] Vašák L., On one generalization of weakly compactly generated Banach spaces, Studia Math., 1981, 70(1), 11–19 | Zbl 0376.46012
[35] Walker R.C., The Stone-Čech Compactification, Ergeb. Math. Grenzgeb., 83, Springer, Berlin-Heidelberg-New York, 1974 | Zbl 0292.54001
[36] Wójtowicz M., Effective constructions of separable quotients of Banach spaces, Collect. Math., 1997, 48(4–6), 809–815 | Zbl 0903.46016
[37] Wójtowicz M., Generalizations of the c 0-ℓ 1-ℓ ∞ theorem of Bessaga and Pełczynski, Bull. Polish Acad. Sci. Math., 2002, 50(4), 373–382
[38] Wójtowicz M., Reflexivity and the separable quotient problem for a class of Banach spaces, Bull. Polish Acad. Sci. Math., 2002, 50(4), 383–394 | Zbl 1031.46009
[39] Zizler V., Nonseparable Banach Spaces, In: Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, 1743–1816 http://dx.doi.org/10.1016/S1874-5849(03)80048-7 | Zbl 1041.46009