The k-Fibonacci matrix and the Pascal matrix
Sergio Falcon
Open Mathematics, Tome 9 (2011), p. 1403-1410 / Harvested from The Polish Digital Mathematics Library

We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269217
@article{bwmeta1.element.doi-10_2478_s11533-011-0089-9,
     author = {Sergio Falcon},
     title = {The k-Fibonacci matrix and the Pascal matrix},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1403-1410},
     zbl = {1285.11055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0089-9}
}
Sergio Falcon. The k-Fibonacci matrix and the Pascal matrix. Open Mathematics, Tome 9 (2011) pp. 1403-1410. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0089-9/

[1] Call G.S., Velleman D.J., Pascal’s matrices, Amer. Math. Monthly, 1993, 100(4), 372–376 http://dx.doi.org/10.2307/2324960 | Zbl 0788.05011

[2] Falcón S., On sequences of products of two k-Fibonacci numbers, Int. J. Contemp. Math. Sci. (in press) | Zbl 06285596

[3] Falcón S., Some tridiagonal matrices and the k-Fibonacci numbers. Appl. Math. Comput. (in press) | Zbl 06285596

[4] Falcón S., Plaza Á., On the Fibonacci k-numbers, Chaos Solitons Fractals, 2007, 32(5), 1615–1624 http://dx.doi.org/10.1016/j.chaos.2006.09.022 | Zbl 1158.11306

[5] Falcón S., Plaza Á., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals, 2007, 33(1), 38–49 http://dx.doi.org/10.1016/j.chaos.2006.10.022 | Zbl 1152.11308

[6] Lee G.-Y., Kim J.-S., The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl., 2003, 373, 75–87 http://dx.doi.org/10.1016/S0024-3795(02)00596-7 | Zbl 1059.11018

[7] Lee G.-Y., Kim J.-S., Cho S.-H., Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 2003, 130(3), 527–534 http://dx.doi.org/10.1016/S0166-218X(03)00331-7 | Zbl 1020.05016

[8] Lee G.-Y., Kim J.-S., Lee S.-G., Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 2002, 40(3), 203–211 | Zbl 1079.11012

[9] Lee G.-Y., Lee S.-G., Shin H.-G., On the k-generalized Fibonacci matrix Q k, Linear Algebra Appl., 1997, 251, 73–88 http://dx.doi.org/10.1016/0024-3795(95)00553-6 | Zbl 0917.05046

[10] Peart P., Woodson L., Triple factorization of some Riordan matrices, Fibonacci Quart., 1993, 31(2), 121–128 | Zbl 0778.05005

[11] Zhang Z., The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 1997, 250, 51–60 http://dx.doi.org/10.1016/0024-3795(95)00452-1

[12] Zhang Z., Wang X., A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 2007, 155(17), 2371–2376 http://dx.doi.org/10.1016/j.dam.2007.06.024 | Zbl 1125.05023