Following a Bendersky-Gitler idea, we construct an isomorphism between Anderson’s and Arone’s complexes modelling the chain complex of a mapping space. This allows us to apply Shipley’s convergence theorem to Arone’s model. As a corollary, we reduce the problem of homotopy equivalence for certain “toy” spaces to a problem in homological algebra.
@article{bwmeta1.element.doi-10_2478_s11533-011-0084-1, author = {Sem\"en Podkorytov}, title = {On the homology of mapping spaces}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1232-1241}, zbl = {1236.55023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0084-1} }
Semën Podkorytov. On the homology of mapping spaces. Open Mathematics, Tome 9 (2011) pp. 1232-1241. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0084-1/
[1] Ahearn S.T., Kuhn N.J., Product and other fine structure in polynomial resolutions of mapping spaces, Algebr. Geom. Topol., 2002, 2, 591–647 http://dx.doi.org/10.2140/agt.2002.2.591 | Zbl 1015.55006
[2] Anderson D.W., A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc., 1972, 78(5), 784–786 http://dx.doi.org/10.1090/S0002-9904-1972-13034-9 | Zbl 0255.55012
[3] Arone G., A generalization of Snaith-type filtration, Trans. Amer. Math. Soc., 1999, 351(3), 1123–1150 http://dx.doi.org/10.1090/S0002-9947-99-02405-8 | Zbl 0945.55011
[4] Bendersky M., Gitler S., The cohomology of certain function spaces, Trans. Amer. Math. Soc., 1991, 326(1), 423–440 http://dx.doi.org/10.2307/2001871 | Zbl 0738.54007
[5] Boardman J.M., Conditionally convergent spectral sequences, In: Homotopy Invariant Algebraic Structures, Baltimore, 1998, Contemp. Math., 239, American Mathematical Society, Providence, 1999, 49–84 | Zbl 0947.55020
[6] Bousfield A.K., On the homology spectral sequence of a cosimplicial space, Amer. J. Math., 1987, 109(2), 361–394 http://dx.doi.org/10.2307/2374579 | Zbl 0623.55009
[7] Bousfield A.K., Kan D.M., Homotopy Limits, Completions and Localizations, Lecture Notes in Math., 304, Springer, Berlin-New York, 1972 http://dx.doi.org/10.1007/978-3-540-38117-4 | Zbl 0259.55004
[8] McCarthy R., On n-excisive functors of module categories, preprint available at www.math.uiuc.edu/~randy/Vita/Papers/DEGCLT3.pdf
[9] Pirashvili T., Dold-Kan type theorem for Γ-groups, Math. Ann., 2000, 318(2), 277–298 http://dx.doi.org/10.1007/s002080000120
[10] Podkorytov S.S., Commutative algebras and representations of the category of finite sets, preprint available at http://arxiv.org/abs/1011.6192
[11] Shipley B.E., Convergence of the homology spectral sequence of a cosimplicial space, Amer. J. Math., 1996, 118(1), 179–207 http://dx.doi.org/10.1353/ajm.1996.0004 | Zbl 0864.55017
[12] Vassiliev V.A., Complements of Discriminants of Smooth Maps: Topology and Applications, Transl. Math. Monogr., 98, American Mathematical Society, Providence, 1992