For any prime p, we consider p-ary linear codes obtained from the span over p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.
@article{bwmeta1.element.doi-10_2478_s11533-011-0072-5, author = {Washiela Fish and Khumbo Kumwenda and Eric Mwambene}, title = {Codes and designs from triangular graphs and their line graphs}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1411-1423}, zbl = {1229.05200}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0072-5} }
Washiela Fish; Khumbo Kumwenda; Eric Mwambene. Codes and designs from triangular graphs and their line graphs. Open Mathematics, Tome 9 (2011) pp. 1411-1423. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0072-5/
[1] Andrásfai B., Graph Theory: Flows, Matrices, Adam Hilger, Bristol, 1991
[2] Assmus E.F. Jr., Key J.D., Designs and their Codes, Cambridge Tracts in Math., 103, Cambridge University Press, Cambridge, 1992 | Zbl 0762.05001
[3] Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, J. Symbolic Comput., 1997, 24(3–4), 235–265 http://dx.doi.org/10.1006/jsco.1996.0125 | Zbl 0898.68039
[4] Fish W., Key J.D., Mwambene E., Codes from incidence matrices and line graphs of Hamming graphs, Discrete Math., 2011, 310(13–14), 1884–1897 | Zbl 1223.05165
[5] Fish W., Key J.D., Mwambene E., Codes from the incidence matrices of graphs on 3-sets, Discrete Math., 2011, 311(6), 1823–1840 http://dx.doi.org/10.1016/j.disc.2011.04.029 | Zbl 1223.05173
[6] Frucht R., On the groups of repeated graphs, Bull. Amer. Math. Soc., 1949, 55(4), 418–420 http://dx.doi.org/10.1090/S0002-9904-1949-09230-3 | Zbl 0034.25801
[7] Gordon D.M., Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 1982, 28(3), 541–543 http://dx.doi.org/10.1109/TIT.1982.1056504 | Zbl 0479.94021
[8] Grassl M., Bounds on the minimum distance of linear codes and quantum codes, available at http://www.codetables.de
[9] Haemers W.H., Peeters R., van Rijckevorsel J.M., Binary codes of strongly regular graphs, Des. Codes Cryptogr., 1999, 17, 187–209 http://dx.doi.org/10.1023/A:1026479210284 | Zbl 0938.05062
[10] Huffman W.C., Codes and groups, In: Handbook of Coding Theory, Vol. II. North-Holland, Amsterdam, 1998, 1345–1440 | Zbl 0926.94039
[11] Key J.D., Fish W., Mwambene E., Codes from incidence matrices and line graphs of Hamming graphs H k (n, 2) for k ≥ 2, Adv. Math. Commun., 2011, 5(2), 373–394 http://dx.doi.org/10.3934/amc.2011.5.373 | Zbl 1223.05165
[12] Key J.D., McDonough T.P., Mavron V.C., Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 2006, 12(2), 232–247 http://dx.doi.org/10.1016/j.ffa.2005.05.007 | Zbl 1089.94044
[13] Key J.D., Moori J., Rodrigues B.G., Permutation decoding for the binary codes from triangular graphs, European J. Combin., 2004, 25(1), 113–123 http://dx.doi.org/10.1016/j.ejc.2003.08.001 | Zbl 1049.94024
[14] Key J.D., Moori J., Rodrigues B.G., Codes associated with triangular graphs and permutation decoding, Int. J. Inf. Coding Theory, 2010, 1(3), 334–349 http://dx.doi.org/10.1504/IJICOT.2010.032547 | Zbl 1204.94113
[15] Kumwenda K., Mwambene E., Codes from graphs related to categorical products of triangular graphs and K n, In: IEEE Information Theory Workshop, Dublin, 30 August–3 September 2010, DOI: 10.1109/CIG.2010.5592662
[16] Little C.H.C., Grant D.D., Holton D.A., On defect-d matchings in graphs, Discrete Math., 1975, 13, 41–54 http://dx.doi.org/10.1016/0012-365X(75)90085-0 | Zbl 0304.05120
[17] MacWilliams F.J., Permutation decoding of systematic codes, Bell System Tech. J., 1964, 43, 485–505 | Zbl 0116.35304
[18] MacWilliams F.J., Sloane N.J.A., The Theory of Error-Correcting Codes, North-Holland Math. Library, 16, North-Holland, Amsterdam-New York-Oxford, 1977
[19] Rodrigues B.G., Codes of Designs and Graphs from Finite Simple Groups, Ph.D. thesis, University of Natal, Pietermaritzburg, 2003
[20] Tonchev V.D., Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monogr. Surveys Pure Appl. Math., 40, Longman Scientific and Technical, Harlow, 1988
[21] Whitney H., Congruent graphs and the connectivity of graphs, Amer. J. Math., 1932, 54(1), 150–168 http://dx.doi.org/10.2307/2371086 | Zbl 58.0609.01