Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open representation of A.
@article{bwmeta1.element.doi-10_2478_s11533-011-0069-0, author = {W\l adys\l aw Wilczy\'nski and Wojciech Wojdowski}, title = {A category $\Psi$-density topology}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1057-1066}, zbl = {1234.54008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0069-0} }
Władysław Wilczyński; Wojciech Wojdowski. A category Ψ-density topology. Open Mathematics, Tome 9 (2011) pp. 1057-1066. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0069-0/
[1] Ciesielski K., Larson L, Ostaszewski K., J-Density Continuous Functions, Mem. Amer. Math. Soc, 515, American Mathematical Society, Providence, 1994
[2] Erdös P., Some remarks on set theory, Ann. of Math., 1943, 44(4), 643–646 http://dx.doi.org/10.2307/1969101 | Zbl 0060.13112
[3] Goffman C, Neugebauer C.J., Nishiura T., Density topology and approximate continuity, Duke Math. J., 1961, 28(4), 497–505 http://dx.doi.org/10.1215/S0012-7094-61-02847-2 | Zbl 0101.15502
[4] Goffman C, Waterman D., Approximately continuous transformations, Proc. Amer. Math. Soc, 1961, 12(1), 116–121 http://dx.doi.org/10.1090/S0002-9939-1961-0120327-6 | Zbl 0096.17103
[5] Haupt O., Pauc Ch., La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris, 1952, 234, 390–392 | Zbl 0046.05601
[6] Hejduk J., On the abstract density topologies, preprint available at http://www.math.uni.lodz.pl/preprints,483.html | Zbl 1199.54018
[7] Kuratowski C., Ulam S., Quelques propriétés topologiques du produit combinatoire, Fund. Math., 1932, 19, 247–251 | Zbl 0005.18301
[8] Lukěs J., Malý J., Zajíčcek L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math., 1189, Springer, Berlin, 1986
[9] Miller H.I., Baire outer kernels of sets, Publ. Inst. Math. (Beograd) (N.S.), 1981, 30(44), 117–122 | Zbl 0501.28001
[10] O’Malley R.J., Approximately differentiable functions: the r topology, Pacific J. Math., 1977, 72(1), 207–222
[11] Ostaszewski K., Continuity in the density topology, Real Anal. Exchange, 1982, 7(2), 259–270 | Zbl 0494.26004
[12] Oxtoby J.C., Measure and Category, 2nd ed., Grad. Texts in Math., 2, Springer, New York-Berlin, 1980 | Zbl 0435.28011
[13] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math., 1985, 125(2), 167–173 | Zbl 0613.26002
[14] Poreda W., Wagner-Bojakowska E., Wilczyński W., Remarks on I-density and I-approximately continuous functions, Comment. Math. Univ. Carolin., 1985, 26(3), 553–563 | Zbl 0587.54056
[15] Sierpiński W., Sur la dualité entre la première catégorie et la mesure nulle, Fund. Math., 1934, 22, 276–280 | Zbl 0009.20405
[16] Sierpiński W., Hypothèse du Continu, Monogr. Mat., 4, Warszawa-Lwów, 1934 | Zbl 60.0035.01
[17] Sierpiński W., Lusin N., Sur une décomposition dun intervalle en une infinité non dénombrable densembles non measurables, C. R. Acad. Sci. Paris, 1917, 165, 422–424 | Zbl 46.0294.01
[18] Szpilrajn E., Remarques sur les fonctions complètement additives densemble et sur les ensembles jouissant de la propriètè de Baire, Fund. Math., 1934, 22, 303–311 | Zbl 0009.30404
[19] Tall F.D., The density topology, Pacific J. Math., 1976, 62(1), 275–284 | Zbl 0305.54039
[20] Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315 | Zbl 0086.04601
[21] Taylor S.J., An alternative form of Egoroffs theorem, Fund. Math., 1960, 48, 169–174 | Zbl 0098.26502
[22] Terepeta M., Wagner-Bojakowska E., ψ-density topology, Rend. Circ. Mat. Palermo, 1999, 48(3), 451–476 http://dx.doi.org/10.1007/BF02844336 | Zbl 0963.26003
[23] Wagner-Bojakowska E., Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ. Modena, 2001, 49(1), 79–87
[24] Wagner-Bojakowska E., Wilczyński W., The interior operation in a ψ-density topology, Rend. Circ. Mat. Palermo, 2000, 49(1), 5–26 http://dx.doi.org/10.1007/BF02904217 | Zbl 0949.26002
[25] Wagner-Bojakowska E., Wilczyński W., Comparison of ψ-density topologies, Real. Anal. Exchange, 2000, 25(2), 661–672 | Zbl 1016.26001
[26] Wilczyński W., A generalization of the density topology, Real. Anal. Exchange, 1983, 8(1), 16–20
[27] Wilczyński W., Density topologies, In: Handbook of Measure Theory, North-Holland, Amsterdam, 2002, 675–702 http://dx.doi.org/10.1016/B978-044450263-6/50016-6 | Zbl 1021.28002
[28] Wojdowski W., Density topologies involving measure and category, Demonstratio Math., 1989, 22(3), 797–812 | Zbl 0703.26006