Multiplicative isometries on the Smirnov class
Osamu Hatori ; Yasuo Iida
Open Mathematics, Tome 9 (2011), p. 1051-1056 / Harvested from The Polish Digital Mathematics Library

We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = fϕ¯¯ for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = (λ1zi1,...,λnzin) for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from 1through n in the case of the n-dimensional polydisk.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269758
@article{bwmeta1.element.doi-10_2478_s11533-011-0068-1,
     author = {Osamu Hatori and Yasuo Iida},
     title = {Multiplicative isometries on the Smirnov class},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1051-1056},
     zbl = {1264.30042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0068-1}
}
Osamu Hatori; Yasuo Iida. Multiplicative isometries on the Smirnov class. Open Mathematics, Tome 9 (2011) pp. 1051-1056. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0068-1/

[1] Ellis A.J., Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc., 1990, 22(4), 381–385 http://dx.doi.org/10.1112/blms/22.4.381 | Zbl 0713.46016

[2] Fleming R.J., Jamison J.E., Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129, Chapman & Hall/CRC, Boca Raton, 2003 | Zbl 1011.46001

[3] Fleming R.J., Jamison J.E., Isometries on Banach Spaces. Vol.2: Vector-Valued Function Spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 138, Chapman & Hall/CRC, Boca Raton, 2008 | Zbl 0367.46026

[4] Mazur S., Ulam S., Sur les transformations isométriques d’espaces vectoriels, normés, C. R. Acad. Sci. Paris, 1932, 194, 946–948 | Zbl 58.0423.01

[5] Palmer T.W., Banach Algebras and the General Theory of *-Algebras, Vol.I: Algebras and Banach Algebras, Ency-clopedia Math. Appl., 49, Cambridge University Press, Cambridge, 1994

[6] Stephenson K., Isometries of the Nevanlinna class, Indiana Univ. Math. J., 1977, 26(2), 307–324 http://dx.doi.org/10.1512/iumj.1977.26.26023 | Zbl 0326.30025

[7] Väisälä J., A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 2003, 110(7), 633–635 http://dx.doi.org/10.2307/3647749 | Zbl 1046.46017