Unramified cohomology of alternating groups
Fedor Bogomolov ; Tihomir Petrov
Open Mathematics, Tome 9 (2011), p. 936-948 / Harvested from The Polish Digital Mathematics Library

We prove vanishing results for the unramified stable cohomology of alternating groups.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269586
@article{bwmeta1.element.doi-10_2478_s11533-011-0061-8,
     author = {Fedor Bogomolov and Tihomir Petrov},
     title = {Unramified cohomology of alternating groups},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {936-948},
     zbl = {1236.20054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0061-8}
}
Fedor Bogomolov; Tihomir Petrov. Unramified cohomology of alternating groups. Open Mathematics, Tome 9 (2011) pp. 936-948. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0061-8/

[1] Adem A., Milgram R.J., Cohomology of Finite Groups, 2nd ed., Grundlehren Math. Wiss., 309, Springer, Berlin, 2004 | Zbl 1061.20044

[2] Bogomolov F.A., The Brauer group of quotient spaces of linear representations, Math. USSR-Izv., 1988, 30(3), 455–485 http://dx.doi.org/10.1070/IM1988v030n03ABEH001024 | Zbl 0679.14025

[3] Bogomolov F.A., Stable cohomology of groups and algebraic varieties, Russian Acad. Sci. Sb. Math., 1993, 76(1), 1–21 http://dx.doi.org/10.1070/SM1993v076n01ABEH003398 | Zbl 0789.14022

[4] Bogomolov F., Maciel J., Petrov T., Unramified Brauer groups of finite simple groups of Lie type Al, Amer. J. Math., 2004, 126(4), 935–949 http://dx.doi.org/10.1353/ajm.2004.0024 | Zbl 1058.14031

[5] Bogomolov F., Petrov T., Tschinkel Yu., Unramified cohomology of finite groups of Lie type, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 55–73 http://dx.doi.org/10.1007/978-0-8176-4934-0_3

[6] Colliot-Thélène J.-L., Birational invariants, purity and the Gersten conjecture, In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, July 6–24, 1992, Proc. Sympos. Pure Math., 58(1), American Mathematical Society, Providence, 1995, 1–64 | Zbl 0834.14009

[7] Colliot-Thélène J.-L., Ojanguren M., Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math., 1989, 97(1), 141–158 http://dx.doi.org/10.1007/BF01850658 | Zbl 0686.14050

[8] Fuks D.B., Cohomologies of the group COS mod 2, Funct. Anal. Appl., 1970, 4(2), 143–151 http://dx.doi.org/10.1007/BF01094491 | Zbl 0222.57031

[9] Garibaldi S., Merkurjev A., Serre J.-P., Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., 28, American Mathematical Society, Providence, 2003 | Zbl 1159.12311

[10] Kunyavskiĭ B., The Bogomolov multiplier of finite simple groups, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 209–217 http://dx.doi.org/10.1007/978-0-8176-4934-0_8 | Zbl 1204.14006

[11] Mann B.M., The cohomology of the alternating groups, Michigan Math. J., 1985, 32(3), 267–277 http://dx.doi.org/10.1307/mmj/1029003238 | Zbl 0604.20053

[12] Saltman D.J., Noether’s problem over an algebraically closed field, Invent. Math., 1984, 77(1), 71–84 http://dx.doi.org/10.1007/BF01389135 | Zbl 0546.14014

[13] Swan R.G., Invariant rational functions and a problem of Steenrod, Invent. Math., 1969, 7(2), 148–158 http://dx.doi.org/10.1007/BF01389798 | Zbl 0186.07601