The problem of invariance of the geometric mean in the class of Lagrangian means was considered in [Głazowska D., Matkowski J., An invariance of geometric mean with respect to Lagrangian means, J. Math. Anal. Appl., 2007, 331(2), 1187–1199], where some necessary conditions for the generators of Lagrangian means have been established. The question if all necessary conditions are also sufficient remained open. In this paper we solve this problem.
@article{bwmeta1.element.doi-10_2478_s11533-011-0059-2, author = {Dorota G\l azowska}, title = {A solution of an open problem concerning Lagrangian mean-type mappings}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1067-1073}, zbl = {1232.26052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0059-2} }
Dorota Głazowska. A solution of an open problem concerning Lagrangian mean-type mappings. Open Mathematics, Tome 9 (2011) pp. 1067-1073. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0059-2/
[1] Borwein J.M., Borwein P.B., Pi and the AGM, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore, 1987
[2] Bullen P.S., MitrinoviĆ D.S., VasiĆ P.M., Means and Their Inequalities, Math. Appl. (East European Ser.), 31, D. Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988
[3] Daróczy Z., Páles Zs., Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen, 2002, 61(1–2), 157–218
[4] Głazowska D., Some Cauchy mean-type mappings for which the geometric mean is invariant, J. Math. Anal. Appl., 2011, 375(2), 418–430 http://dx.doi.org/10.1016/j.jmaa.2010.09.036 | Zbl 1205.26042
[5] Głazowska D., Matkowski J., An invariance of geometric mean with respect to Lagrangian means, J. Math. Anal. Appl., 2007, 331(2), 1187–1199 http://dx.doi.org/10.1016/j.jmaa.2006.09.005 | Zbl 1119.26029
[6] Matkowski J., Invariant and complementary quasi-arithmetic means, Aequationes Math., 1999, 57(1), 87–107 http://dx.doi.org/10.1007/s000100050072 | Zbl 0930.26014
[7] Matkowski J., Iterations of mean-type mappings and invariant means, Ann. Math. Sil., 1999, 13, 211–226 | Zbl 0954.26015
[8] Matkowski J., On invariant generalized Beckenbach-Gini means, In: Functional Equations - Results and Advances, Adv. Math. (Dordr.), 3, Kluwer, Dordrecht, 2002, 219–230 | Zbl 0996.39019
[9] Matkowski J., Lagrangian mean-type mappings for which the arithmetic mean is invariant, J. Math. Anal. Appl., 2005, 309(1), 15–24 http://dx.doi.org/10.1016/j.jmaa.2004.10.033 | Zbl 1084.39019