Let L n, n ≥ 1, denote the sequence which counts the number of paths from the origin to the line x = n − 1 using (1, 1), (1, −1), and (1, 0) steps that never dip below the x-axis (called Motzkin left factors). The numbers L n count, among other things, certain restricted subsets of permutations and Catalan paths. In this paper, we provide new combinatorial interpretations for these numbers in terms of finite set partitions. In particular, we identify four classes of the partitions of size n, all of which have cardinality L n and each avoiding a set of two classical patterns of length four. We obtain a further generalization in one of the cases by considering a pair of statistics on the partition class. In a couple of cases, to show the result, we make use of the kernel method to solve a functional equation arising after a certain parameter has been introduced.
@article{bwmeta1.element.doi-10_2478_s11533-011-0057-4, author = {Toufik Mansour and Mark Shattuck}, title = {Pattern avoiding partitions and Motzkin left factors}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {1121-1134}, zbl = {1233.05035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0057-4} }
Toufik Mansour; Mark Shattuck. Pattern avoiding partitions and Motzkin left factors. Open Mathematics, Tome 9 (2011) pp. 1121-1134. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0057-4/
[1] Alonso L., Schott R., Random Generation of Trees, Kluwer, Dordrecht, Boston, 1995
[2] Banderier C., Bousquet-Mélou M., Denise A., Flajolet P., Gardy D., Gouyou-Beauchamps D., Generating functions for generating trees, Discrete Math., 2002, 246(1–3), 29–55 http://dx.doi.org/10.1016/S0012-365X(01)00250-3 | Zbl 0997.05007
[3] Barcucci E., Del Lungo A., Pergola E., Pinzani R., From Motzkin to Catalan permutations, Discrete Math., 2000, 217(1–3), 33–49 http://dx.doi.org/10.1016/S0012-365X(99)00254-X | Zbl 0965.05004
[4] Benjamin AT., Quinn J.J., Proofs that Really Count, Dolciani Math. Exp., 27, Mathematical Association of America, Washington, 2003
[5] Flajolet P., Combinatorial aspects of continued fractions, Discrete Math., 1980, 32(2), 125–161 http://dx.doi.org/10.1016/0012-365X(80)90050-3
[6] Gouyou-Beauchamps D., Viennot G., Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., 1988, 9(3), 334–357 http://dx.doi.org/10.1016/0196-8858(88)90017-6 | Zbl 0727.05036
[7] Goyt A.M., Avoidance of partitions of a three-element set, Adv. in Appl. Math., 2008, 41(1), 95–114 http://dx.doi.org/10.1016/j.aam.2006.07.006 | Zbl 1139.05003
[8] Jelínek V, Mansour T., On pattern avoiding partitions, Electron. J. Combin., 2008, 15(1), #R39 | Zbl 1179.05014
[9] Josuat-Vergès M., Rubey M., Crossings, Motzkin paths and moments, preprint available at http://arxiv.org/abs/1008.3093
[10] Klazar M., On abab-free and abba-free set partitions, European J. Combin., 1996, 17(1), 53–68 http://dx.doi.org/10.1006/eujc.1996.0005
[11] Knuth D.E., The Art of Computer Programming, Vol. 1,3, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley, Reading, 1968, 1974 | Zbl 0191.17903
[12] Milne S.C., A g-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials, Trans. Amer. Math. Soc, 1978, 245, 89–118 | Zbl 0402.05007
[13] Sagan B.E., Pattern avoidance in set partitions, Ars Combin., 2010, 94(1), 79–96 | Zbl 1240.05018
[14] Sapounakis A., Tsikouras P., Counting peaks and valleys in k-colored Motzkin paths, Electron. J. Combin., 2005, 12, #R16 | Zbl 1060.05009
[15] Simion R., Schmidt F.W., Restricted permutations, European J. Combin., 1985, 6(4), 383–406 | Zbl 0615.05002
[16] Sloane N.J.A., The On-Line Encyclopedia of Integer Sequences, http://oeis.org | Zbl 1274.11001