3-dimensional sundials
Enrico Carlini ; Maria Catalisano ; Anthony Geramita
Open Mathematics, Tome 9 (2011), p. 949-971 / Harvested from The Polish Digital Mathematics Library

R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269063
@article{bwmeta1.element.doi-10_2478_s11533-011-0054-7,
     author = {Enrico Carlini and Maria Catalisano and Anthony Geramita},
     title = {3-dimensional sundials},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {949-971},
     zbl = {1237.14066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0054-7}
}
Enrico Carlini; Maria Catalisano; Anthony Geramita. 3-dimensional sundials. Open Mathematics, Tome 9 (2011) pp. 949-971. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0054-7/

[1] Abo H., Ottaviani G., Peterson C., Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 2009, 361(2), 767–792 http://dx.doi.org/10.1090/S0002-9947-08-04725-9 | Zbl 1170.14036

[2] Alexander J., Hirschowitz A., Polynomial interpolation in several variables, J. Algebraic Geom., 1995, 4(2), 201–222 | Zbl 0829.14002

[3] Bürgisser P., Clausen M., Shokrollahi M.A., Algebraic Complexity Theory, Grundlehren Math. Wiss., 315, Springer, Berlin, 1997 | Zbl 1087.68568

[4] Carlini E., Catalisano M.V., Geramita A.V., Bipolynomial Hilbert functions, J. Algebra, 2010, 324(4), 758–781 http://dx.doi.org/10.1016/j.jalgebra.2010.04.008 | Zbl 1197.13016

[5] Carlini E., Catalisano M.V., Geramita A.V., Reduced and non-reduced linear spaces: lines and points (in preparation) | Zbl 06582855

[6] Carlini E., Chiantini L., Geramita A.V., Complete intersections on general hypersurfaces. Michigan Math. J., 2008, 57, 121–136 http://dx.doi.org/10.1307/mmj/1220879400 | Zbl 1181.14057

[7] Catalisano M.V., Geramita A.V., Gimigliano A., Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., 2002, 355, 263–285 http://dx.doi.org/10.1016/S0024-3795(02)00352-X | Zbl 1059.14061

[8] Catalisano M.V., Geramita A.V., Gimigliano A., Erratum to: “Ranks of tensors, secant varieties of Segre varieties and fat points” [Linear Algebra Appl. 355 (2002) 263–285], Linear Algebra Appl., 2003, 367, 347–348 http://dx.doi.org/10.1016/S0024-3795(03)00455-5 | Zbl 1059.14061

[9] Catalisano M.V., Geramita A.V., Gimigliano A., Higher secant varieties of Segre-Veronese varieties, In: Projective Varieties with Unexpected Properties, Walter de Gruyter, Berlin, 2005, 81–107 | Zbl 1102.14037

[10] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc., 2005, 133(3), 633–642 http://dx.doi.org/10.1090/S0002-9939-04-07632-4 | Zbl 1077.14065

[11] Catalisano M.V., Geramita A.V., Gimigliano A., Segre-Veronese embeddings of ℙ1×ℙ1×ℙ1 and their secant varieties, Collect. Math., 2007, 58(1), 1–24

[12] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of ℙ1 ×…×ℙ1 (n-times) are not defective for n ≥ 5, J. Algebraic Geom., 2011, 20(2), 295–327 | Zbl 1217.14039

[13] Comon P., Mourrain B., Decomposition of quantics in sums of powers of linear forms, Signal Process., 1996, 53(2), 93–107 http://dx.doi.org/10.1016/0165-1684(96)00079-5 | Zbl 0875.94079

[14] CoCoA: a system for making Computations in Commutative Algebra, available at http://cocoa.dima.unige.it

[15] Hartshorne R., Hirschowitz A., Droites en position générale dans l’espace projectif. In: Algebraic Geometry, La Rábida, 1981, Lecture Notes in Math., 961, Springer, Berlin, 1982, 169–188 http://dx.doi.org/10.1007/BFb0071282 | Zbl 0555.14011

[16] Pistone G., Riccomagno E., Wynn H.P., Algebraic Statistics, Monogr. Statist. Appl. Probab., 89, Chapman & Hall/CRC, Boca Raton, 2001 | Zbl 0960.62003