Conditions for strong Morita equivalence of partially ordered semigroups
Lauri Tart
Open Mathematics, Tome 9 (2011), p. 1100-1113 / Harvested from The Polish Digital Mathematics Library

We investigate when a partially ordered semigroup (with various types of local units) is strongly Morita equivalent to a posemigroup from a given class of partially ordered semigroups. Necessary and sufficient conditions for such equivalence are obtained for a series of well-known classes of posemigroups. A number of sufficient conditions for several classes of naturally ordered posemigroups are also provided.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269423
@article{bwmeta1.element.doi-10_2478_s11533-011-0053-8,
     author = {Lauri Tart},
     title = {Conditions for strong Morita equivalence of partially ordered semigroups},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1100-1113},
     zbl = {1261.06019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0053-8}
}
Lauri Tart. Conditions for strong Morita equivalence of partially ordered semigroups. Open Mathematics, Tome 9 (2011) pp. 1100-1113. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0053-8/

[1] Banaschewski B., Functors into categories of M-sets, Abh. Math. Semin. Univ. Hamburg, 1972, 38, 49–64 http://dx.doi.org/10.1007/BF02996922 | Zbl 0257.18011

[2] Bass H., The Morita Theorems, lecture notes, University of Oregon, Eugene, Oregon, 1962

[3] Bulman-Fleming S., Flatness properties of S-posets: an overview, In: Proceedings of the International Conference on Semigroups, Acts and Categories with Applications to Graphs, Tartu, June 27–30, 2007, Math. Stud. (Tartu), 3, Estonian Mathematical Society, Tartu, 2008, 28–40 | Zbl 1173.20042

[4] Laan V., Context equivalence of semigroups, Period. Math. Hungar., 2010, 60(1), 81–94 http://dx.doi.org/10.1007/s10998-010-1081-z | Zbl 1214.20061

[5] Laan V., Márki L., Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 2011, 215(10), 2538–2546 http://dx.doi.org/10.1016/j.jpaa.2011.02.017 | Zbl 1237.20057

[6] Laan V., Márki L., Morita invariants for semigroups with local units, Monatsh. Math (in press), DOI: 10.1007/s00605-010-0279-8 | Zbl 1256.20054

[7] Lawson M.V., Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 2011, 215(4), 455–470 http://dx.doi.org/10.1016/j.jpaa.2010.04.030 | Zbl 1229.20060

[8] McAlister D.B., Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Austral. Math. Soc. Ser. A, 1981, 31(3), 325–336 http://dx.doi.org/10.1017/S1446788700019467 | Zbl 0474.06015

[9] McAlister D.B., Rees matrix covers for locally inverse semigroups, Trans. Amer. Math. Soc., 1983, 277(2), 727–738 http://dx.doi.org/10.1090/S0002-9947-1983-0694385-3 | Zbl 0516.20039

[10] McAlister D.B., Rees matrix covers for regular semigroups, J. Algebra, 1984, 89(2), 264–279 http://dx.doi.org/10.1016/0021-8693(84)90217-5 | Zbl 0543.20041

[11] McAlister D.B., Blyth T.S., Split orthodox semigroups, J. Algebra, 1978, 51(2), 491–525 http://dx.doi.org/10.1016/0021-8693(78)90118-7 | Zbl 0391.20043

[12] Nambooripad K.S.S., The natural partial order on a regular semigroup, Proc. Edinb. Math. Soc., 1980, 23(3), 249–260 http://dx.doi.org/10.1017/S0013091500003801 | Zbl 0459.20054

[13] Neklyudova V.V., Polygons under semigroups with a system of local units, Fundam. Prikl. Mat., 1997, 3(3), 879–902 (in Russian) | Zbl 0932.20056

[14] Neklyudova V.V., Morita equivalence of semigroups with a system of local units, Fundam. Prikl. Mat., 1999, 5(2), 539–555 (in Russian) | Zbl 0963.20035

[15] Talwar S., Morita equivalence for semigroups, J. Austral. Math. Soc. Ser. A, 1995, 59(1), 81–111 http://dx.doi.org/10.1017/S1446788700038489

[16] Talwar S., Strong Morita equivalence and a generalisation of the Rees theorem, J. Algebra, 1996, 181(2), 371–394 http://dx.doi.org/10.1006/jabr.1996.0125 | Zbl 0855.20054

[17] Tart L., Morita equivalence for ordered semigroups with local units, Period. Math. Hungar. (in press) | Zbl 1289.06024

[18] Tart L., On Morita equivalence of partially ordered semigroups with local units, Acta Comment. Univ. Tartu. Math. (in press)

[19] Tart L., Characterizations of strong Morita equivalence for ordered semigroups with local units (submitted)